Contributed by James Craig Burley (craig@jcb-sc.com). Inspired by a first pass
at translating ‘g77-0.5.16/£/D0OC’ that was contributed to Craig by David Ronis
(ronis@onsager.chem.mcgill.ca).

Using and Porting GNU Fortran

James Craig Burley

Last updated 2002-04-29

for version GCC-3.1

Copyright (©) 1995,1996,1997,1998,1999,2000,2001,2002 Free Software Foundation, Inc.

For the GCC-3.1 Version™

Published by the Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”
and “Funding Free Software”, the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is included in the section
entitled “GNU Free Documentation License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction . v v v v v v vt oo e e s s s e eeeeeeososssssoonees 1
GNU GENERAL PUBLICLICENSEviiiieiiiiiee... 3
GNU Free Documentation License « e o« o o o oo v v v v v vvveennss 11
Contributors to GNU Fortran . « v v o v v v v v v e e e v i vnennnn. 19
Funding Free Software oo oo v i i i i iiien.. 21
1 Funding GNU Fortran . . . o v v e v v i e e i et i ieennn. 23
2 Getting Started . . oo oo i vt ittt i e 25
3 What is GNU Fortran? viiiiieeeeeeeseonns 27
4 Compile Fortran, C, or Other Programs + . « c v v e v v v v. .. 31
5 GNU Fortran Command Options.ccveeeeennsn. 33
6 News About GNU Fortran . . v o v v v v v e v e i i v nnenn. 57
7 User-visible Changes « o v v v o v v v v e e et v i vieennnnnns 75
8 The GNU Fortran Language « « v o v oo v v v v v e eeeeeennnn 85
9 OtherDialectS. oo v v v v v v v v eeeeeeesssoeeeeeosssss 187
10 The GNU Fortran Compiler « e e oo oo v v v v v vveeensns 201
11 Other Compilers « o o v v vttt e ettt eeennns 231
12 Other Languages . « o o o v v vt v e v v v vveeeeeoeennns 235
13 Debugging and Interfacingo v evenenee.. 239
14 Collected Fortran Wisdom + e v v v v v v v e veeeneeeennn. 251
15 Known Causes of Trouble with GNU Fortran........... 269
16 Open QUEStIONS . v v v v v vt v v e e oo eeeeeeessennnns 299
17 Reporting Bugs e v v v v v v vt i i iiiiieeneeeeeennns 301
18 How To Get Help with GNU Fortran 309
19 Adding OptionS. e o oo v v e v vveeoeeeesooeososnnns 311
20 ProjectS..eeeeeeeoneeeeeeeeeesnsnonnoeeaeeonns 313
21 Front End......cooeiiieeiieeesieeeoeennsonnss 319
22 DiagnostiCs . e v v v v v it ettt eernnnseeeooeeeenns 345

1

Using and Porting GNU Fortran

Table of Contents

Introduction................ ..., 1

GNU GENERAL PUBLIC LICENSE 3

Preamble. 3
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION.................. 4

How to Apply These Terms to Your New Programs............. 8

GNU Free Documentation License 11

ADDENDUM: How to use this License for your documents. 17

Contributors to GNU Fortran 19

Funding Free Software 21

1 Funding GNU Fortran 23

2 Getting Started................ 25

3 What is GNU Fortran? 27

4 Compile Fortran, C, or Other Programs.... 31

5 GNU Fortran Command Options 33

5.1 Option Summary........... ... eiiineiiininna., 33

5.2 Options Controlling the Kind of Output 35

5.3 Shorthand Options............ 37

5.4 Options Controlling Fortran Dialect 38

5.5 Options to Request or Suppress Warnings................ 43

5.6 Options for Debugging Your Program or GNU Fortran.... 46

5.7 Options That Control Optimization 47

5.8 Options Controlling the Preprocessor 49

5.9 Options for Directory Search............................ 50

5.10 Options for Code Generation Conventions............... 50

5.11 Environment Variables Affecting GNU Fortran 55

6 News About GNU Fortran................ 57

7 User-visible Changes...................... 75

iii

Using and Porting GNU Fortran

iv
8 The GNU Fortran Language............... 85
8.1 Direction of Language Development 85
8.2 ANSI FORTRAN 77 Standard Support 87
8.2.1 No Passing External Assumed-length............ 87
8.2.2 No Passing Dummy Assumed-length 87
8.2.3 No Pathological Implied-DO.................... 87
8.2.4 No Useless Implied-DO......................... 88
8.3 Conformance 88
8.4 Notation Used in This Chapter.......................... 89
8.5 Fortran Terms and Concepts.............coviiiiin... 90
8.5.1 Syntactic Items............ 90
8.5.2 Statements, Comments, and Lines 90
8.5.3 Scope of Symbolic Names and Statement Labels.. 91
8.6 Characters, Lines, and Execution Sequence............... 91
8.6.1 GNU Fortran Character Set 91
8.6.2 Lineso 92
8.6.3 Continuation Line 93
8.6.4 Statements............. 93
8.6.5 Statement Labels.............................. 93
8.6.6 Order of Statements and Lines.................. 94
8.6.7 Including Source Text.......................... 94
8.6.8 Cpp-style directives............................ 95
8.7 Data Types and Constants.............................. 95
8.7.1 DataTypes.....ccooviiiiniiiiinii .. 96
8.7.1.1 Double Notation...................... 96
8.7.1.2 Star Notation......................... 97
8.7.1.3 Kind Notation 98
872 Constants......... ..., 100
8.7.3 Integer Type........oiiii i, 101
8.7.4 Character Type 101
8.8 EXPressions..........c.oeiuiiiiiinii 102
8.8.1 The %LOC() Construct 102
8.9 Specification Statements................, 102
8.9.1 NAMELIST Statement 103
8.9.2 DOUBLE COMPLEX Statement.................... 103
8.10 Control Statements................ 103
810.1 DO WHILE.......... ... 103
810.2 END DO ... 103
8.10.3 Construct Names............................ 104
8.10.4 The CYCLE and EXIT Statements.............. 104
8.11 Functions and Subroutines............................ 105
8.11.1 The %VAL(Q) Construct 105
8.11.2 The %REF() Construct 106
8.11.3 The %DESCR() Construct..................... 106
8.11.4 Generics and Specifics 107
8.11.5 REAL() and AIMAGQ) of Complex 110
8.11.6 CMPLX() of DOUBLE PRECISION................ 111

8.11.7 MIL-STD 1753 Support...................... 111

8.11.8 £77/f2c Intrinsicscovieeiii ... 112

8.11.9 Table of Intrinsic Functions 112
8.11.9.1 Abort Intrinsic 112
8.11.9.2 AbsIntrinsic........................ 113
8.11.9.3 AccessIntrinsic..................... 113
8.11.9.4 AChar Intrinsic..................... 114
811.9.5 ACos Intrinsic...................... 114
8.11.9.6 AdjustL Intrinsic 114
8.11.9.7 AdjustR Intrinsic................... 114
8.11.9.8 Almag Intrinsic..................... 114
811.9.9 Alnt Intrinsic....................... 115
8.11.9.10 Alarm Intrinsic.................... 115
811.9.11 AllIntrinsic....................... 115
8.11.9.12 Allocated Intrinsic................. 115
8.11.9.13 ALog Intrinsic..................... 116
8.11.9.14 ALogl0 Intrinsic................... 116
8.11.9.15 AMax0 Intrinsic 116
8.11.9.16 AMax]l Intrinsic 116
8.11.9.17 AMinO Intrinsic.................... 117
8.11.9.18 AMinl Intrinsic.................... 117
8.11.9.19 AMod Intrinsic 117
811.9.20 And Intrinsic...................... 117
8.11.9.21 ANInt Intrinsic.................... 118
8.11.9.22 Any Intrinsic...................... 118
8.11.9.23 ASin Intrinsic 118
8.11.9.24 Associated Intrinsic................ 118
8.11.9.25 ATan Intrinsic..................... 118
8.11.9.26 ATan2 Intrinsic.................... 119
8.11.9.27 BesJO Intrinsic..................... 119
8.11.9.28 BesJl Intrinsic..................... 119
8.11.9.29 BesJN Intrinsic.................... 119
8.11.9.30 BesYO Intrinsic.................... 120
8.11.9.31 BesYl Intrinsic.................... 120
8.11.9.32 BesYN Intrinsic.................... 120
8.11.9.33 Bit_Size Intrinsic................... 120
8.11.9.34 BTest Intrinsic..................... 121
8.11.9.35 CAbs Intrinsic..................... 121
8.11.9.36 CCos Intrinsic..................... 121
8.11.9.37 Ceiling Intrinsic 121
8.11.9.38 CExp Intrinsic..................... 122
8.11.9.39 Char Intrinsic 122
8.11.9.40 ChDir Intrinsic (subroutine) 122
8.11.9.41 ChMod Intrinsic (subroutine)....... 123
8.11.9.42 CLog Intrinsic..................... 123
8.11.9.43 Cmplx Intrinsic.................... 124
8.11.9.44 Complex Intrinsic.................. 124
8.11.9.45 Conjg Intrinsic 124
811.9.46 CosIntrinsic................coo... 125

vi

8.11.9.47
8.11.9.48
8.11.9.49
8.11.9.50
8.11.9.51
8.11.9.52
8.11.9.53
8.11.9.54
8.11.9.55
8.11.9.56
8.11.9.57
8.11.9.58
8.11.9.59
8.11.9.60
8.11.9.61
8.11.9.62
8.11.9.63
8.11.9.64
8.11.9.65
8.11.9.66
8.11.9.67
8.11.9.68
8.11.9.69
8.11.9.70
8.11.9.71
8.11.9.72
8.11.9.73
8.11.9.74
8.11.9.75
8.11.9.76
8.11.9.77
8.11.9.78
8.11.9.79
8.11.9.80
8.11.9.81
8.11.9.82
8.11.9.83
8.11.9.84
8.11.9.85
8.11.9.86
8.11.9.87
8.11.9.88
8.11.9.89
8.11.9.90
8.11.9.91
8.11.9.92
8.11.9.93
8.11.9.94

Using and Porting GNU Fortran

CosH Intrinsic..................... 125
Count Intrinsic 125
CPU_Time Intrinsic................ 125
CShift Intrinsic 126
CSin Intrinsic 126
CSqRt Intrinsic.................... 126
CTime Intrinsic (subroutine)........ 126
CTime Intrinsic (function).......... 127
DAbs Intrinsic..................... 127
DACos Intrinsic 127
DASin Intrinsic.................... 127
DATan Intrinsic 128
DATan2 Intrinsic 128
Date_and_Time Intrinsic............ 128
DbesJO Intrinsic 129
DbesJ1 Intrinsic 129
DbesJN Intrinsic................... 129
DbesYO Intrinsic................... 129
DbesY1 Intrinsic................... 130
DbesYN Intrinsic 130
Dble Intrinsic...................... 130
DCos Intrinsic..................... 130
DCosH Intrinsic 131
DDiM Intrinsic 131
DErF Intrinsic..................... 131
DErFC Intrinsic 131
DExp Intrinsic..................... 132
Digits Intrinsic 132
DiM Intrinsic...................... 132
DInt Intrinsic...................... 132
DLog Intrinsic..................... 132
DLogl0 Intrinsic................... 133
DMax1 Intrinsic 133
DMinl Intrinsic.................... 133
DMod Intrinsic 133
DNInt Intrinsic 134
Dot_Product Intrinsic 134
DProd Intrinsic.................... 134
DSign Intrinsic 134
DSin Intrinsic 134
DSinH Intrinsic.................... 135
DSqRt Intrinsic.................... 135
DTan Intrinsic..................... 135
DTanH Intrinsic 135
DTime Intrinsic (subroutine) 136
EOShift Intrinsic 136
Epsilon Intrinsic 136

ErF Intrinsic 136

8.11.9.95

8.11.9.96

8.11.9.97

8.11.9.98

8.11.9.99

8.11.9.100
8.11.9.101
8.11.9.102
8.11.9.103
8.11.9.104
8.11.9.105
8.11.9.106
8.11.9.107
8.11.9.108
8.11.9.109
8.11.9.110
8.11.9.111
8.11.9.112
8.11.9.113
8.11.9.114
8.11.9.115
8.11.9.116
8.11.9.117
8.11.9.118
8.11.9.119
8.11.9.120
8.11.9.121
8.11.9.122
8.11.9.123
8.11.9.124
8.11.9.125
8.11.9.126
8.11.9.127
8.11.9.128
8.11.9.129
8.11.9.130
8.11.9.131
8.11.9.132
8.11.9.133
8.11.9.134
8.11.9.135
8.11.9.136
8.11.9.137
8.11.9.138
8.11.9.139
8.11.9.140
8.11.9.141
8.11.9.142

ErFC Intrinsic..................... 137
ETime Intrinsic (subroutine)........ 137
ETime Intrinsic (function).......... 137
Exit Intrinsic...................... 138
Exp Intrinsic, 138
Exponent Intrinsic................ 138
FDate Intrinsic (subroutine)....... 138
FDate Intrinsic (function) 139
FGet Intrinsic (subroutine) 139
FGetC Intrinsic (subroutine)....... 139
Float Intrinsic.................... 140
Floor Intrinsic.................... 140
Flush Intrinsic.................... 140
FNum Intrinsic................... 140
FPut Intrinsic (subroutine)........ 141
FPutC Intrinsic (subroutine) 141
Fraction Intrinsic 141
FSeek Intrinsic 141
FStat Intrinsic (subroutine)........ 142
FStat Intrinsic (function).......... 143
FTell Intrinsic (subroutine) 143
FTell Intrinsic (function) 144
GError Intrinsic 144
GetArg Intrinsic.................. 144
GetCWD Intrinsic (subroutine) 144
GetCWD Intrinsic (function) 145
GetEnv Intrinsic.................. 145
GetGId Intrinsic.................. 145
GetLog Intrinsic.................. 145
GetPId Intrinsic 146
GetUId Intrinsic.................. 146
GMTime Intrinsic 146
HostNm Intrinsic (subroutine) 147
HostNm Intrinsic (function) 147
Huge Intrinsic.................... 147
TAbs Intrinsic..................... 147
TAChar Intrinsic.................. 148
TAnd Intrinsic 148
TArgC Intrinsic 148
IBClIr Intrinsic.................... 148
IBits Intrinsic 149
IBSet Intrinsic.................... 149
IChar Intrinsic.................... 149
IDate Intrinsic (UNIX)............ 150
IDiM Intrinsic.................... 150
IDInt Intrinsic.................... 150
IDNInt Intrinsic 151
IEOr Intrinsic 151

vii

viii

8.11.9.143
8.11.9.144
8.11.9.145
8.11.9.146
8.11.9.147
8.11.9.148
8.11.9.149
8.11.9.150
8.11.9.151
8.11.9.152
8.11.9.153
8.11.9.154
8.11.9.155
8.11.9.156
8.11.9.157
8.11.9.158
8.11.9.159
8.11.9.160
8.11.9.161
8.11.9.162
8.11.9.163
8.11.9.164
8.11.9.165
8.11.9.166
8.11.9.167
8.11.9.168
8.11.9.169
8.11.9.170
8.11.9.171
8.11.9.172
8.11.9.173
8.11.9.174
8.11.9.175
8.11.9.176
8.11.9.177
8.11.9.178
8.11.9.179
8.11.9.180
8.11.9.181
8.11.9.182
8.11.9.183
8.11.9.184
8.11.9.185
8.11.9.186
8.11.9.187
8.11.9.188
8.11.9.189
8.11.9.190

Using and Porting GNU Fortran

IErrNo Intrinsic 151
IFix Intrinsic 151
Imag Intrinsic 152
ImagPart Intrinsic................ 152
Index Intrinsic.................... 152
Int Intrinsic 153
Int2 Intrinsic 153
Int8 Intrinsic 153
IOr Intrinsic...................... 154
IRand Intrinsic 154
IsaTty Intrinsic................... 154
IShft Intrinsic 155
IShftC Intrinsic................... 155
ISign Intrinsic 155
ITime Intrinsic 156
Kill Intrinsic (subroutine) 156
Kind Intrinsic 156
LBound Intrinsic 156
Len Intrinsic 156
Len_Trim Intrinsic 157
LGe Intrinsic..................... 157
LGt Intrinsic 158
Link Intrinsic (subroutine)......... 158
LLe Intrinsic 158
LLt Intrinsic 159
LnBlnk Intrinsic.................. 159
Loc Intrinsic. 159
Log Intrinsic 160
Logl0 Intrinsic 160
Logical Intrinsic 160
Long Intrinsic 160
LShift Intrinsic 161
LStat Intrinsic (subroutine)........ 161
LStat Intrinsic (function).......... 162
LTime Intrinsic................... 163
MatMul Intrinsic 163
Max Intrinsic..................... 163
Max0 Intrinsic.................... 164
Max1 Intrinsic.................... 164
MaxExponent Intrinsic............ 164
MaxLoc Intrinsic 164
MaxVal Intrinsic.................. 164
MClock Intrinsic.................. 164
MClock8 Intrinsic................. 165
Merge Intrinsic 165
Min Intrinsic 165
MinO Intrinsic 166

Minl Intrinsic 166

8.11.9.191
8.11.9.192
8.11.9.193
8.11.9.194
8.11.9.195
8.11.9.196
8.11.9.197
8.11.9.198
8.11.9.199
8.11.9.200
8.11.9.201
8.11.9.202
8.11.9.203
8.11.9.204
8.11.9.205
8.11.9.206
8.11.9.207
8.11.9.208
8.11.9.209
8.11.9.210
8.11.9.211
8.11.9.212
8.11.9.213
8.11.9.214
8.11.9.215
8.11.9.216
8.11.9.217
8.11.9.218
8.11.9.219
8.11.9.220
8.11.9.221
8.11.9.222
8.11.9.223
8.11.9.224
8.11.9.225
8.11.9.226
8.11.9.227
8.11.9.228
8.11.9.229
8.11.9.230
8.11.9.231
8.11.9.232
8.11.9.233
8.11.9.234
8.11.9.235
8.11.9.236
8.11.9.237
8.11.9.238

MinExponent Intrinsic 166
MinLoc Intrinsic.................. 166
MinVal Intrinsic 166
Mod Intrinsic..................... 166
Modulo Intrinsic.................. 167
MvBits Intrinsic 167
Nearest Intrinsic.................. 167
NInt Intrinsic..................... 167
Not Intrinsic 168
Or Intrinsic 168
Pack Intrinsic 168
PError Intrinsic 168
Precision Intrinsic................. 168
Present Intrinsic.................. 168
Product Intrinsic 169
Radix Intrinsic 169
Rand Intrinsic.................... 169
Random_Number Intrinsic......... 169
Random_Seed Intrinsic............ 169
Range Intrinsic................... 169
Real Intrinsic..................... 169
RealPart Intrinsic................. 170
Rename Intrinsic (subroutine) 170
Repeat Intrinsic 171
Reshape Intrinsic 171
RRSpacing Intrinsic............... 171
RShift Intrinsic................... 171
Scale Intrinsic 171
Scan Intrinsic. 171
Second Intrinsic (function)......... 172
Second Intrinsic (subroutine) 172
Selected_Int_Kind Intrinsic......... 172
Selected_Real_Kind Intrinsic....... 172
Set_Exponent Intrinsic 172
Shape Intrinsic 173
Short Intrinsic.................... 173
Sign Intrinsic..................... 173
Signal Intrinsic (subroutine) 173
Sin Intrinsic...................... 174
SinH Intrinsic 174
Sleep Intrinsic 175
Sngl Intrinsic..................... 175
Spacing Intrinsic.................. 175
Spread Intrinsic................... 175
SqRt Intrinsic 175
SRand Intrinsic................... 176
Stat Intrinsic (subroutine)......... 176

Stat Intrinsic (function) 177

ix

Using and Porting GNU Fortran

X
8.11.9.239 Sum Intrinsic..................... 177

8.11.9.240 SymLnk Intrinsic (subroutine) 177

8.11.9.241 System Intrinsic (subroutine) 178

8.11.9.242 System_Clock Intrinsic 178

8.11.9.243 Tan Intrinsic 179

8.11.9.244 TanH Intrinsic.................... 179

8.11.9.245 Time Intrinsic (UNIX) 179

8.11.9.246 TimeS8 Intrinsic................... 179

8.11.9.247 Tiny Intrinsic..................... 180

8.11.9.248 Transfer Intrinsic 180

8.11.9.249 Transpose Intrinsic................ 180

8.11.9.250 Trim Intrinsic 180

8.11.9.251 TtyNam Intrinsic (subroutine). 180

8.11.9.252 TtyNam Intrinsic (function)....... 181

8.11.9.253 UBound Intrinsic 181

8.11.9.254 UMask Intrinsic (subroutine) 181

8.11.9.255 Unlink Intrinsic (subroutine)....... 181

8.11.9.256 Unpack Intrinsic.................. 182

8.11.9.257 Verify Intrinsic 182

8.11.9.258 XOr Intrinsic..................... 182

8.11.9.259 ZAbs Intrinsic.................... 182

8.11.9.260 ZCos Intrinsic 182

8.11.9.261 ZExp Intrinsic.................... 183

8.11.9.262 ZLog Intrinsic 183

8.11.9.263 ZSin Intrinsic..................... 183

8.11.9.264 ZSqRt Intrinsic................... 183

8.12 Scope and Classes of Symbolic Names 184
8.12.1 Underscores in Symbol Names................ 184

813 I/O . 184
8.14 Fortran 90 Features 184
9 Other Dialects..............., 187
9.1 Source Form 187
9.1.1 Carriage Returns 187

9.1.2 Tabs. ... 187

9.1.3 Short Lines i 188

9.14 LongLines.......... ..., 188

9.1.5 Ampersand Continuation Line................. 188

9.2 Trailing Comment............... 188
9.3 Debug Line....... ... 189
9.4 Dollar Signs in Symbol Names 189
9.5 Case Sensitivityoooiiiiii 189
9.6 VXT Fortran, 193
9.6.1 Meaning of Double Quote 193

9.6.2 Meaning of Exclamation Point in Column 6. 193

9.7 Fortran 90. 194
9.8 Pedantic Compilation 194
9.9 Distensionsoiiiii i 196

9.9.1 Implicit Argument Conversion................. 196

9.9.2 Ugly Assumed-Size Arrays 196

9.9.3 Ugly Complex Part Extraction 197

9.9.4 Ugly Null Arguments 197

9.9.5 Ugly Conversion of Initializers................. 198

9.9.6 Ugly Integer Conversions...................... 198

9.9.7 Ugly Assigned Labels......................... 199

10 The GNU Fortran Compiler............. 201
10.1 Compiler Limits 201
10.2 Run-time Environment Limits......................... 201
10.2.1 Timer Wraparounds 202

10.2.2 Year 2000 (Y2K) Problems................... 202

10.2.3 Array Size ... 203

10.2.4 Character-variable Length.................... 204

10.2.5 Year 10000 (Y10K) Problems................. 204

10.3 Compiler Types......over e 204
10.4 Compiler Constantsooiiieriineenna... 206
10.5 Compiler Intrinsics............coo i, 206
10.5.1 Intrinsic Groups............coovviiii... 206

10.5.2 Other Intrinsics, 208
10.5.2.1 ACosD Intrinsic 208

10.5.2.2 AIMax0 Intrinsic 208

10.5.2.3 AIMinO Intrinsic.................... 208

10.5.2.4 AJMax0 Intrinsic 208

10.5.2.5 AJMin0 Intrinsic.................... 208

10.5.2.6 ASinD Intrinsic..................... 208

10.5.2.7 ATan2D Intrinsic 208

10.5.2.8 ATanD Intrinsic 208

10.5.2.9 BlTest Intrinsic..................... 209

10.5.2.10 BJTest Intrinsic 209

10.5.2.11 CDAbs Intrinsic 209

10.5.2.12 CDCos Intrinsic 209

10.5.2.13 CDExp Intrinsic................... 209

10.5.2.14 CDLog Intrinsic 210

10.5.2.15 CDSin Intrinsic.................... 210

10.5.2.16 CDSqRt Intrinsic 210

10.5.2.17 ChDir Intrinsic (function) 210

10.5.2.18 ChMod Intrinsic (function) 211

10.5.2.19 CosD Intrinsic..................... 211

10.5.2.20 DACosD Intrinsic.................. 211

10.5.2.21 DASinD Intrinsic 211

10.5.2.22 DATan2D Intrinsic................. 211

10.5.2.23 DATanD Intrinsic.................. 211

10.5.2.24 Date Intrinsic...................... 212

10.5.2.25 DbleQ Intrinsic.................... 212

10.5.2.26 DCmplx Intrinsic 212

10.5.2.27 DConjg Intrinsic................... 213

xi

xii

10.5.2.28
10.5.2.29
10.5.2.30
10.5.2.31
10.5.2.32
10.5.2.33
10.5.2.34
10.5.2.35
10.5.2.36
10.5.2.37
10.5.2.38
10.5.2.39
10.5.2.40
10.5.2.41
10.5.2.42
10.5.2.43
10.5.2.44
10.5.2.45
10.5.2.46
10.5.2.47
10.5.2.48
10.5.2.49
10.5.2.50
10.5.2.51
10.5.2.52
10.5.2.53
10.5.2.54
10.5.2.55
10.5.2.56
10.5.2.57
10.5.2.58
10.5.2.59
10.5.2.60
10.5.2.61
10.5.2.62
10.5.2.63
10.5.2.64
10.5.2.65
10.5.2.66
10.5.2.67
10.5.2.68
10.5.2.69
10.5.2.70
10.5.2.71
10.5.2.72
10.5.2.73
10.5.2.74
10.5.2.75

Using and Porting GNU Fortran

DCosD Intrinsic 213
DFloat Intrinsic 213
DFlotl Intrinsic.................... 213
DFlotJ Intrinsic 213
Dlmag Intrinsic.................... 213
DReal Intrinsic 214
DSinD Intrinsic.................... 214
DTanD Intrinsic................... 214
DTime Intrinsic (function).......... 214
FGet Intrinsic (function) 215
FGetC Intrinsic (function).......... 215
Floatl Intrinsic 215
FloatJ Intrinsic.................... 216
FPut Intrinsic (function) 216
FPutC Intrinsic (function).......... 216
IDate Intrinsic (VXT).............. 216
ITAbs Intrinsic..................... 217
IIAnd Intrinsic 217
IIBClr Intrinsic.................... 217
IIBits Intrinsic..................... 217
IIBSet Intrinsic.................... 217
IIDiM Intrinsic 217
IIDInt Intrinsic 217
IIDNnt Intrinsic 217
IIEOr Intrinsic 218
IIFix Intrinsic 218
IInt Intrinsic 218
IIOr Intrinsic...................... 218
IIQint Intrinsic 218
IIQNnt Intrinsic 218
IIShftC Intrinsic................... 218
IISign Intrinsic 218
IMax0 Intrinsic 218
IMax1 Intrinsic 218
IMinO Intrinsic 219
IMinl Intrinsic 219
IMod Intrinsic..................... 219
INInt Intrinsic..................... 219
INot Intrinsic...................... 219
IZExt Intrinsic. 219
JIAbs Intrinsic..................... 219
JIAnd Intrinsic 219
JIBClIr Intrinsic.................... 219
JIBits Intrinsic 219
JIBSet Intrinsic. 220
JIDIiM Intrinsic.................... 220
JIDInt Intrinsic.................... 220

JIDNnt Intrinsic................... 220

10.5.2.76
10.5.2.77
10.5.2.78
10.5.2.79
10.5.2.80
10.5.2.81
10.5.2.82
10.5.2.83
10.5.2.84
10.5.2.85
10.5.2.86
10.5.2.87
10.5.2.88
10.5.2.89
10.5.2.90
10.5.2.91
10.5.2.92
10.5.2.93
10.5.2.94
10.5.2.95
10.5.2.96
10.5.2.97
10.5.2.98
10.5.2.99
10.5.2.100
10.5.2.101
10.5.2.102
10.5.2.103
10.5.2.104
10.5.2.105
10.5.2.106
10.5.2.107
10.5.2.108
10.5.2.109
10.5.2.110
10.5.2.111
10.5.2.112
10.5.2.113
10.5.2.114
10.5.2.115
10.5.2.116
10.5.2.117
10.5.2.118
10.5.2.119
10.5.2.120
10.5.2.121
10.5.2.122
10.5.2.123

JIEOr Intrinsic 220
JIFix Intrinsic 220
JInt Intrinsic 220
JIOr Intrinsic.............. 220
JIQint Intrinsic.................... 220
JIQNnt Intrinsic................... 220
JIShft Intrinsic 221
JIShftC Intrinsic................... 221
JISign Intrinsic.................... 221
JMax0 Intrinsic.................... 221
JMax1 Intrinsic.................... 221
JMinO Intrinsic 221
JMinl Intrinsic.................... 221
JMod Intrinsic..................... 221
JNInt Intrinsic..................... 221
JNot Intrinsic 221
JZExt Intrinsic 222
Kill Intrinsic (function)............. 222
Link Intrinsic (function)............ 222
QAbs Intrinsic..................... 222
QACos Intrinsic 222
QACosD Intrinsic.................. 223
QASin Intrinsic.................... 223
QASinD Intrinsic 223
QATan Intrinsic 223
QATan2 Intrinsic 223
QATan2D Intrinsic................ 223
QATanD Intrinsic................. 223
QCos Intrinsic.................... 223
QCosD Intrinsic 223
QCosH Intrinsic 223
QDiM Intrinsic 224
QExp Intrinsic.................... 224
QExt Intrinsic.................... 224
QExtD Intrinsic 224
QFloat Intrinsic 224
QInt Intrinsic..................... 224
QLog Intrinsic.................... 224
QLogl0 Intrinsic.................. 224
QMax]1 Intrinsic 224
QMinl Intrinsic 224
QMod Intrinsic................... 225
QNInt Intrinsic................... 225
QSin Intrinsic 225
QSinD Intrinsic................... 225
QSinH Intrinsic................... 225
QSqRt Intrinsic................... 225
QTan Intrinsic.................... 225

xiii

Using and Porting GNU Fortran

xiv

10.5.2.124 QTanD Intrinsic.................. 225
10.5.2.125 QTanH Intrinsic 225
10.5.2.126 Rename Intrinsic (function)........ 226
10.5.2.127 Secnds Intrinsic................... 226
10.5.2.128 Signal Intrinsic (function) 226
10.5.2.129 SinD Intrinsic 227
10.5.2.130 SnglQ Intrinsic 227
10.5.2.131 SymLnk Intrinsic (function) 228
10.5.2.132 System Intrinsic (function) 228
10.5.2.133 TanD Intrinsic.................... 228
10.5.2.134 Time Intrinsic (VXT)............. 229
10.5.2.135 UMask Intrinsic (function) 229
10.5.2.136 Unlink Intrinsic (function)......... 229
10.5.2.137 ZExt Intrinsic 229
11 Other Compilers........................ 231
11.1 Dropping f2c Compatibility 231
11.2 Compilers Other Than f2¢c 232
12 Other Languages 235
12.1 Tools and advice for interoperating with C and C++ 235
12.1.1 C Interfacing Tools 235
12.1.2 Accessing Type Informationin C............. 235

12.1.3 Generating Skeletons and Prototypes with £2¢
... 235
12.1.4 C++ Considerations.................oon.... 236
12.1.5 Startup Code ... 236
13 Debugging and Interfacing 239
13.1 Main Program Unit (PROGRAM)..................... 239
13.2 Procedures (SUBROUTINE and FUNCTION) 240
13.3 Functions (FUNCTION and RETURN)................ 241
134 Names ... 241
13.5 Common Blocks (COMMON)......................... 242
13.6 Local Equivalence Areas (EQUIVALENCE)............ 242
13.7 Complex Variables (COMPLEX) 243
13.8 Arrays (DIMENSION) ... 243
13.9 Adjustable Arrays (DIMENSION)..................... 244
13.10 Alternate Entry Points (ENTRY) 245
13.11 Alternate Returns (SUBROUTINE and RETURN).... 247
13.12 Assigned Statement Labels (ASSIGN and GOTO)..... 247
13.13 Run-time Library Errors............................. 248

14 Collected Fortran Wisdom 251

14.1 Advantages Over f2¢c 251
14.1.1 Language Extensions 251
14.1.2 Diagnostic Abilities.......................... 252
14.1.3 Compiler Options 252
14.1.4 Compiler Speed 252
14.1.5 Program Speed............ 252
14.1.6 Ease of Debugging........................... 253
14.1.7 Character and Hollerith Constants............ 254
14.2 Block Data and Libraries 254
143 LOOPS - oot 255
14.4 Working Programs 257
14.4.1 Not My Type ... 257
14.4.2 Variables Assumed To Be Zero 258
14.4.3 Variables Assumed To Be Saved 258
14.4.4 Unwanted Variables 258
14.4.5 Unused Arguments 259
14.4.6 Surprising Interpretations of Code 259
14.4.7 Aliasing Assumed To Work................... 259
14.4.8 Output Assumed To Flush 261
14.4.9 Large File Unit Numbers..................... 262
14.4.10 Floating-point precision..................... 263
14.4.11 Inconsistent Calling Sequences............... 263
14.5 Overly Convenient Command-line Options 263
14.6 Faster Programs 264
14.6.1 Aligned Data............ ... 265
14.6.2 Prefer Automatic Uninitialized Variables 266
14.6.3 Avoid f2c Compatibility...................... 266
14.6.4 Use Submodel Options....................... 266

15 Known Causes of Trouble with GNU Fortran

....................................... 269
15.1 Bugs Not In GNU Fortran............................ 269
15.1.1 Signal 11 and Friends........................ 269
15.1.2 Cannot Link Fortran Programs............... 270
15.1.3 Large Common Blocks....................... 270
15.1.4 Debugger Problems.......................... 270
15.1.5 NeXTStep Problems......................... 271
15.1.6 Stack Overflow 271
15.1.7 Nothing Happens............... 272
15.1.8 Strange Behavior at Run Time 273
15.1.9 Floating-point Errors 273
15.2 Known Bugs In GNU Fortran......................... 275
15.3 Missing Features........... L 278
15.3.1 Better Source Model 278
15.3.2 Fortran 90 Support 278
15.3.3 Intrinsics in PARAMETER Statements 279

15.3.4 Arbitrary Concatenation 279

xvi Using and Porting GNU Fortran

15.3.5 SELECT CASE on CHARACTER Type............. 279
15.3.6 RECURSIVE Keyword 279
15.3.7 Increasing Precision/Range................... 279
15.3.8 Popular Non-standard Types................. 280
15.3.9 Full Support for Compiler Types.............. 280
15.3.10 Array Bounds Expressions 280
15.3.11 POINTER Statements...................... 280
15.3.12 Sensible Non-standard Constructs 280
15.3.13 READONLY Keyword 281
15.3.14 FLUSH Statementcoo.... 281
15.3.15 Expressions in FORMAT Statements 281
15.3.16 Explicit Assembler Code 282
15.3.17 Q Edit Descriptor 282
15.3.18 Old-style PARAMETER Statements......... 282
15.3.19 TYPE and ACCEPT I/O Statements............ 282
15.3.20 STRUCTURE, UNION, RECORD, MAP.............. 282
15.3.21 OPEN, CLOSE, and INQUIRE Keywords......... 283
15.3.22 ENCODE and DECODE..................coou.... 283
15.3.23 AUTOMATIC Statement....................... 284
15.3.24 Suppressing Space Padding of Source Lines... 284
15.3.25 Fortran Preprocessor 284
15.3.26 Bit Operations on Floating-point Data....... 285
15.3.27 Really Ugly Character Assignments.......... 285
15.3.28 POSIX Standard 285
15.3.29 Floating-point Exception Handling........... 285
15.3.30 Nonportable Conversions.................... 286
15.3.31 Large Automatic Arrays 286
15.3.32 Support for Threads 286
15.3.33 Enabling Debug Lines 286
15.3.34 Better Warnings............................ 286
15.3.35 Gracefully Handle Sensible Bad Code 287
15.3.36 Non-standard Conversions. 287
15.3.37 Non-standard Intrinsics..................... 287
15.3.38 Modifying DO Variable 287
15.3.39 Better Pedantic Compilation 287
15.3.40 Warn About Implicit Conversions............ 288
15.3.41 Invalid Use of Hollerith Constant 288
15.3.42 Dummy Array Without Dimensioning Dummy
... 288
15.3.43 Invalid FORMAT Specifiers 288
15.3.44 Ambiguous Dialects 288
15.3.45 Unused Labels 288
15.3.46 Informational Messages 289
15.3.47 Uninitialized Variables at Run Time 289
15.3.48 Portable Unformatted Files 289
15.3.49 Better List-directed I/O..................... 290
15.3.50 Default to Console I/O 290

15.3.51 Labels Visible to Debugger.................. 290

16

17

18

19

20

15.4 Disappointments and Misunderstandings............... 290

15.4.1 Mangling of Names in Source Code 291

15.4.2 Multiple Definitions of External Names........ 291

15.4.3 Limitation on Implicit Declarations........... 291

15.5 Certain Changes We Don’t Want to Make.............. 291

15.5.1 Backslash in Constants....................... 291

15.5.2 Initializing Before Specifying 293

15.5.3 Context-Sensitive Intrinsicness................ 293

15.5.4 Context-Sensitive Constants.................. 294

15.5.5 Equivalence Versus Equality.................. 295

15.5.6 Order of Side Effects......................... 296

15.6 Warning Messages and Error Messages................. 296

Open Questionso0vuun.. 299
Reporting Bugs 301
17.1 Have You Found a Bug?........................... ... 301

17.2 Where to Report Bugs, 303

17.3 How to Report Bugs 304

How To Get Help with GNU Fortran.... 309

Adding Optionsvvun.. 311
Projectscoiiiiiiii... 313
20.1 Improve Efficiency i 313
20.2 Better Optimization............. 314
20.3 Simplify Porting 314
20.4 More Extensionsoiiiiiii i 315
20.5 Machine Model 316
20.6 Internals Documentation.............................. 316
20.7 Internals Improvements................. 316

20.8 Better Diagnostics 317

xvii

xviii Using and Porting GNU Fortran

21 Front End..............., 319
21.1 Overview of SOUICESooiitii i 319
21.2 Overview of Translation Process.................... ... 321

21.2.1 gi7stripcard ... 323
21.2.2 1eX.C i 324
21.2.3 stacC.. .o 327
21.2.4 SELC o 327
2125 SEQeC. et 327
21.2.6 stb.C.....oii 327
21.2.7 €XPI.Coovvie 327
21.2.8 StC.C.vi 327
21.2.9 stdeC..oo 327
21210 stec...ovi 327
21.2.11 Gotchas (Transforming)..................... 327
21.2.11.1 Multi-character Lexemes 327
21.2.11.2 Space-padding Lexemes 328
21.2.11.3 Bizarre Free-form Hollerith Constants
.. 328
21.2.11.4 Hollerith Constants 329
21.2.11.5 Confusing Function Keyword 329
21.2.11.6 Weird READ 330
21.2.12 TBD (Transforming)........................ 330
21.3 Philosophy of Code Generation........................ 331
21.4 Two-pass Design........ ..o ... 333
21.4.1 Two-pass Code. 333
2142 Why Two Passescooiiiioa.. 333
21.5 Challenges Posed......... i 336
21.6 Transforming Statements 337
21.6.1 Statements Needing Temporaries 337
21.6.2 Transforming DO WHILE.................... 338
21.6.3 Transforming Iterative DO 339
21.6.4 Transforming Block IF 339
21.6.5 Transforming SELECT CASE 339
21.7 Transforming Expressions............................. 341
21.8 Internal Naming Conventions 342

22 Diagnostics...........coviiiiiiiiiiaa.. 345
22.1 CMPAMBIG.ttt et e e e e e e e 345
22,2 EXPIMP ...ttt e 348
22.3 INTGLOB. ...ttt e e e 348
22,4 LEX ittt e e 349
22.5 GLOBALSt 351
22.6 LINKFAILttt e e e e 352
227 Y2KBAD ..ottt 352

Introduction 1

Introduction

This manual documents how to run, install and port g77, as well as its new features and
incompatibilities, and how to report bugs. It corresponds to the GCC-3.1 version of g77.

Using and Porting GNU Fortran

GNU GENERAL PUBLIC LICENSE 3

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

4 Using and Porting GNU Fortran

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

GNU GENERAL PUBLIC LICENSE 5

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6.

10.

Using and Porting GNU Fortran

Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

GNU GENERAL PUBLIC LICENSE 7

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

8 Using and Porting GNU Fortran

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.

This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit

GNU GENERAL PUBLIC LICENSE 9

linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

10

Using and Porting GNU Fortran

GNU Free Documentation License 11

GNU Free Documentation License

Version 1.1, March 2000

Copyright (©) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

12

Using and Porting GNU Fortran

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTgX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML designed for human
modification. Opaque formats include PostScript, PDF, proprietary formats that can
be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

GNU Free Documentation License 13

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

o

Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

14

Using and Porting GNU Fortran

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant

GNU Free Documentation License 15

Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

Y

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this

16

10.

Using and Porting GNU Fortran

License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

GNU Free Documentation License 17

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:
Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ¢‘GNU
Free Documentation License’’.
If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

18

Using and Porting GNU Fortran

Contributors to GNU Fortran 19

Contributors to GNU Fortran

In addition to James Craig Burley, who wrote the front end, many people have helped
create and improve GNU Fortran.

e The packaging and compiler portions of GNU Fortran are based largely on the GNU CC
compiler. See section “Contributors to GCC” in Using the GNU Compiler Collection
(GCC), for more information.

e The run-time library used by GNU Fortran is a repackaged version of the 1ibf2c¢ library
(combined from the 1ibF77 and 1ibI77 libraries) provided as part of £2¢, available for
free from netlib sites on the Internet.

e Cygnus Support and The Free Software Foundation contributed significant money
and/or equipment to Craig’s efforts.

e The following individuals served as alpha testers prior to g77’s public release. This
work consisted of testing, researching, sometimes debugging, and occasionally providing
small amounts of code and fixes for g77, plus offering plenty of helpful advice to Craig:

Jonathan Corbet
Dr. Mark Fernyhough
Takafumi Hayashi (The University of Aizu)—takafumi@u-aizu.ac.jp
Kate Hedstrom
Michel Kern (INRIA and Rice University)—Michel.Kern@inria.fr
Dr. A. O. V. Le Blanc
Dave Love
Rick Lutowski
Toon Moene
Rick Niles
Derk Reefman
Wayne K. Schroll
Bill Thorson
Pedro A. M. Vazquez
Tan Watson
e Dave Love (d.love@dl.ac.uk) wrote the libU77 part of the run-time library.

e Scott Snyder (snyder@dOsgif.fnal.gov) provided the patch to add rudimentary sup-
port for INTEGER*1, INTEGER*2, and LOGICAL*1. This inspired Craig to add further
support, even though the resulting support would still be incomplete.

e David Ronis (ronis@onsager.chem.mcgill.ca) inspired and encouraged Craig
to rewrite the documentation in texinfo format by contributing a first pass at a
translation of the old ‘g77-0.5.16/£/D0OC’ file.

e Toon Moene (toon@moene.indiv.nluug.nl) performed some analysis of generated
code as part of an overall project to improve g77 code generation to at least be as
good as f2c¢ used in conjunction with gcc. So far, this has resulted in the three,
somewhat experimental, options added by g77 to the gcc compiler and its back end.

(These, in turn, had made their way into the egcs version of the compiler, and do not
exist in gcc version 2.8 or versions of g77 based on that version of gcc.)

20 Using and Porting GNU Fortran

e John Carr (jfc@mit.edu) wrote the alias analysis improvements.

e Thanks to Mary Cortani and the staff at Craftwork Solutions (support@craftwork.com)j
for all of their support.

e Many other individuals have helped debug, test, and improve g77 over the past several
years, and undoubtedly more people will be doing so in the future. If you have done
so, and would like to see your name listed in the above list, please ask! The default is
that people wish to remain anonymous.

Funding Free Software 21

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since
creative accounting and unrelated business decisions can greatly alter what fraction of the
sales price counts as profit. If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright (© 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

22

Using and Porting GNU Fortran

Chapter 1: Funding GNU Fortran 23

1 Funding GNU Fortran

James Craig Burley (craig@jcb-sc.com), the original author of g77, stopped working
on it in September 1999 (He has a web page at http://world.std.com/%7Eburley.)

GNU Fortran is currently maintained by Toon Moene (toon@moene.indiv.nluug.nl),
with the help of countless other volunteers.

As with other GNU software, funding is important because it can pay for needed equip-
ment, personnel, and so on.

The FSF provides information on the best way to fund ongoing development of GNU
software (such as GNU Fortran) in documents such as the “GNUS Bulletin”. FEmail
gnu@gnu.org for information on funding the FSF.

Another important way to support work on GNU Fortran is to volunteer to help out.
Email gcc@gcc.gnu.org to volunteer for this work.

However, we strongly expect that there will never be a version 0.6 of g77. Work on
this compiler has stopped as of the release of GCC 3.1, except for bug fixing. g77 will be
succeeded by g95 - see http://g95.sourceforge.net.

See [Funding Free Software|, page 21, for more information.

24

Using and Porting GNU Fortran

Chapter 2: Getting Started 25

2 Getting Started

If you don’t need help getting started reading the portions of this manual that are most
important to you, you should skip this portion of the manual.

If you are new to compilers, especially Fortran compilers, or new to how compilers are
structured under UNIX and UNIX-like systems, you’ll want to see Chapter 3 [What is GNU
Fortran?], page 27.

If you are new to GNU compilers, or have used only one GNU compiler in the past and
not had to delve into how it lets you manage various versions and configurations of gcc,
you should see Chapter 4 [G77 and GCC], page 31.

Everyone except experienced g77 users should see Chapter 5 [Invoking G77], page 33.

If you're acquainted with previous versions of g77, you should see Chapter 6 [News
About GNU Fortran|, page 57. Further, if you've actually used previous versions of g77,
especially if you’ve written or modified Fortran code to be compiled by previous versions of
g77, you should see Chapter 7 [Changes]|, page 75.

If you intend to write or otherwise compile code that is not already strictly conforming
ANSI FORTRAN 77—and this is probably everyone—you should see Chapter 8 [Language],
page 85.

If you run into trouble getting Fortran code to compile, link, run, or work properly,
you might find answers if you see Chapter 13 [Debugging and Interfacing]|, page 239, see
Chapter 14 [Collected Fortran Wisdom], page 251, and see Chapter 15 [Trouble], page 269.
You might also find that the problems you are encountering are bugs in g77—see Chapter 17
[Bugs], page 301, for information on reporting them, after reading the other material.

If you need further help with g77, or with freely redistributable software in general, see
Chapter 18 [Service], page 309.

If you would like to help the g77 project, see Chapter 1 [Funding GNU Fortran]|, page 23,
for information on helping financially, and see Chapter 20 [Projects], page 313, for informa-
tion on helping in other ways.

If you’re generally curious about the future of g77, see Chapter 20 [Projects|, page 313.

If you're curious about its past, see [Contributors], page 19, and see Chapter 1 [Funding
GNU Fortran], page 23.

To see a few of the questions maintainers of g77 have, and that you might be able to
answer, see Chapter 16 [Open Questions], page 299.

26

Using and Porting GNU Fortran

Chapter 3: What is GNU Fortran? 27

3

What is GNU Fortran?

GNU Fortran, or g77, is designed initially as a free replacement for, or alternative to,

the UNIX £77 command. (Similarly, gcc is designed as a replacement for the UNIX cc
command.)

g77 also is designed to fit in well with the other fine GNU compilers and tools.

Sometimes these design goals conflict—in such cases, resolution often is made in favor

of fitting in well with Project GNU. These cases are usually identified in the appropriate
sections of this manual.

As compilers, g77, gcc, and £77 share the following characteristics:

They read a user’s program, stored in a file and containing instructions written in the
appropriate language (Fortran, C, and so on). This file contains source code.

They translate the user’s program into instructions a computer can carry out more
quickly than it takes to translate the instructions in the first place. These instructions
are called machine code—code designed to be efficiently translated and processed by
a machine such as a computer. Humans usually aren’t as good writing machine code
as they are at writing Fortran or C, because it is easy to make tiny mistakes writing
machine code. When writing Fortran or C, it is easy to make big mistakes.

They provide information in the generated machine code that can make it easier to
find bugs in the program (using a debugging tool, called a debugger, such as gdb).

They locate and gather machine code already generated to perform actions requested
by statements in the user’s program. This machine code is organized into libraries and
is located and gathered during the link phase of the compilation process. (Linking
often is thought of as a separate step, because it can be directly invoked via the 1d
command. However, the g77 and gcc commands, as with most compiler commands,
automatically perform the linking step by calling on 1d directly, unless asked to not do
so by the user.)

They attempt to diagnose cases where the user’s program contains incorrect usages of
the language. The diagnostics produced by the compiler indicate the problem and the
location in the user’s source file where the problem was first noticed. The user can use
this information to locate and fix the problem. (Sometimes an incorrect usage of the
language leads to a situation where the compiler can no longer make any sense of what
follows—while a human might be able to—and thus ends up complaining about many
“problems” it encounters that, in fact, stem from just one problem, usually the first
one reported.)

They attempt to diagnose cases where the user’s program contains a correct usage of the
language, but instructs the computer to do something questionable. These diagnostics
often are in the form of warnings, instead of the errors that indicate incorrect usage of
the language.

How these actions are performed is generally under the control of the user. Using

command-line options, the user can specify how persnickety the compiler is to be regarding
the program (whether to diagnose questionable usage of the language), how much time to
spend making the generated machine code run faster, and so on.

g77 consists of several components:

28 Using and Porting GNU Fortran

e A modified version of the gcc command, which also might be installed as the system’s
cc command. (In many cases, cc refers to the system’s “native” C compiler, which
might be a non-GNU compiler, or an older version of gcc considered more stable or
that is used to build the operating system kernel.)

e The g77 command itself, which also might be installed as the system’s £77 command.

e The 1libg2c run-time library. This library contains the machine code needed to support
capabilities of the Fortran language that are not directly provided by the machine code
generated by the g77 compilation phase.

libg2c is just the unique name g77 gives to its version of 1ibf2c to distinguish it from
any copy of 1ibf2c installed from f2c (or versions of g77 that built 1ibf2c under that
same name) on the system.

The maintainer of 1ibf2¢ currently is dmg@bell-labs. com.
e The compiler itself, internally named £771.

Note that £771 does not generate machine code directly—it generates assembly code
that is a more readable form of machine code, leaving the conversion to actual machine
code to an assembler, usually named as.

gcc is often thought of as “the C compiler” only, but it does more than that. Based
on command-line options and the names given for files on the command line, gcc deter-
mines which actions to perform, including preprocessing, compiling (in a variety of possible
languages), assembling, and linking.

For example, the command ‘gcc foo.c’ drives the file ‘foo.c’ through the preprocessor
cpp, then the C compiler (internally named cc1), then the assembler (usually as), then the
linker (1d), producing an executable program named ‘a.out’ (on UNIX systems).

As another example, the command ‘gcc foo.cc’ would do much the same as ‘gcc foo.c’,
but instead of using the C compiler named ccl, gcc would use the C++ compiler (named
cclplus).

In a GNU Fortran installation, gcc recognizes Fortran source files by name just like it
does C and C++ source files. It knows to use the Fortran compiler named £771, instead of
ccl or cclplus, to compile Fortran files.

Non-Fortran-related operation of gcc is generally unaffected by installing the GNU For-
tran version of gcc. However, without the installed version of gcc being the GNU Fortran
version, gcc will not be able to compile and link Fortran programs—and since g77 uses gcc
to do most of the actual work, neither will g77!

The g77 command is essentially just a front-end for the gcc command. Fortran users
will normally use g77 instead of gcc, because g77 knows how to specify the libraries needed
to link with Fortran programs (1ibg2c and 1m). g77 can still compile and link programs
and source files written in other languages, just like gcc.

The command ‘g77 -v’ is a quick way to display lots of version information for the
various programs used to compile a typical preprocessed Fortran source file—this produces
much more output than ‘gcc -v’ currently does. (If it produces an error message near the
end of the output—diagnostics from the linker, usually 1d—you might have an out-of-date
libf2c that improperly handles complex arithmetic.) In the output of this command,
the line beginning ‘GNU Fortran Front End’ identifies the version number of GNU Fortran;

Chapter 3: What is GNU Fortran? 29

immediately preceding that line is a line identifying the version of gcc with which that
version of g77 was built.

The 1ibf2c library is distributed with GNU Fortran for the convenience of its users, but
is not part of GNU Fortran. It contains the procedures needed by Fortran programs while
they are running.

For example, while code generated by g77 is likely to do additions, subtractions, and
multiplications in line—in the actual compiled code—it is not likely to do trigonometric
functions this way.

Instead, operations like trigonometric functions are compiled by the £771 compiler (in-
voked by g77 when compiling Fortran code) into machine code that, when run, calls on
functions in 1ibg2c, so 1libg2c must be linked with almost every useful program having
any component compiled by GNU Fortran. (As mentioned above, the g77 command takes
care of all this for you.)

The £771 program represents most of what is unique to GNU Fortran. While much
of the 1ibg2c component comes from the 1ibf2c component of £2¢, a free Fortran-to-C
converter distributed by Bellcore (AT&T), plus 1ibU77, provided by Dave Love, and the
g77 command is just a small front-end to gcc, £771 is a combination of two rather large
chunks of code.

One chunk is the so-called GNU Back End, or GBE, which knows how to generate fast
code for a wide variety of processors. The same GBE is used by the C, C++, and Fortran
compiler programs ccl, cclplus, and £771, plus others. Often the GBE is referred to as
the “gcc back end” or even just “gcc”—in this manual, the term GBE is used whenever the
distinction is important.

The other chunk of £771 is the majority of what is unique about GNU Fortran—the code
that knows how to interpret Fortran programs to determine what they are intending to do,
and then communicate that knowledge to the GBE for actual compilation of those programs.
This chunk is called the Fortran Front End (FFE). The ccl and cclplus programs have
their own front ends, for the C and C++ languages, respectively. These fronts ends are
responsible for diagnosing incorrect usage of their respective languages by the programs the
process, and are responsible for most of the warnings about questionable constructs as well.
(The GBE handles producing some warnings, like those concerning possible references to
undefined variables.)

Because so much is shared among the compilers for various languages, much of the be-
havior and many of the user-selectable options for these compilers are similar. For example,
diagnostics (error messages and warnings) are similar in appearance; command-line options
like ‘-Wall’ have generally similar effects; and the quality of generated code (in terms of
speed and size) is roughly similar (since that work is done by the shared GBE).

30

Using and Porting GNU Fortran

Chapter 4: Compile Fortran, C, or Other Programs 31

4 Compile Fortran, C, or Other Programs

A GNU Fortran installation includes a modified version of the gcc command.
In a non-Fortran installation, gcc recognizes C, C++, and Objective-C source files.

In a GNU Fortran installation, gcc also recognizes Fortran source files and accepts
Fortran-specific command-line options, plus some command-line options that are designed
to cater to Fortran users but apply to other languages as well.

See section “Compile C; C++; Objective-C; Ada; Fortran; or Java” in Using the GNU
Compiler Collection (GCC), for information on the way different languages are handled by
the GNU CC compiler (gcc).

Also provided as part of GNU Fortran is the g77 command. The g77 command is
designed to make compiling and linking Fortran programs somewhat easier than when using
the gcc command for these tasks. It does this by analyzing the command line somewhat
and changing it appropriately before submitting it to the gcc command.

Use the ‘-v’ option with g77 to see what is going on—the first line of output is the
invocation of the gcc command.

32

Using and Porting GNU Fortran

Chapter 5: GNU Fortran Command Options 33

5 GNU Fortran Command Options

The g77 command supports all the options supported by the gcc command. See section
“GCC Command Options” in Using the GNU Compiler Collection (GCC), for information
on the non-Fortran-specific aspects of the gcc command (and, therefore, the g77 command).

All gcc and g77 options are accepted both by g77 and by gcc (as well as any other
drivers built at the same time, such as g++), since adding g77 to the gcc distribution
enables acceptance of g77 options by all of the relevant drivers.

In some cases, options have positive and negative forms; the negative form of ‘-ffoo’
would be ‘~fno-foo’. This manual documents only one of these two forms, whichever one
is not the default.

5.1 Option Summary

Here is a summary of all the options specific to GNU Fortran, grouped by type. Expla-
nations are in the following sections.

Qverall Options
See Section 5.2 [Options Controlling the Kind of Output], page 35.

-fversion -fset-g77-defaults -fno-silent

Shorthand Options
See Section 5.3 [Shorthand Options], page 37.

-f£f66 -fno-f66 —-ff77 -fno-f77 -fno-ugly

Fortran Language Options
See Section 5.4 [Options Controlling Fortran Dialect], page 38.

-ffree-form -fno-fixed-form -££90

-fvxt -fdollar-ok -fno-backslash

-fno-ugly-args -fno-ugly-assign -fno-ugly-assumed
-fugly-comma -fugly-complex -fugly-init -fugly-logint
-fonetrip -ftypeless-boz

-fintrin-case-initcap -fintrin-case-upper
-fintrin-case-lower -fintrin-case-any
-fmatch-case-initcap -fmatch-case-upper
-fmatch-case-lower -fmatch-case-any
-fsource-case-upper -fsource-case-lower
-fsource-case-preserve

-fsymbol-case-initcap -fsymbol-case-upper
-fsymbol-case-lower -fsymbol-case-any
-fcase-strict-upper -fcase-strict-lower
-fcase-initcap -fcase-upper -fcase-lower -fcase-preserve
-ff2c-intrinsics—-delete -ff2c-intrinsics-hide
-ff2c-intrinsics—-disable -ff2c-intrinsics-enable
-fbadu77-intrinsics-delete —-fbadu77-intrinsics-hide
-fbadu77-intrinsics-disable -fbadu77-intrinsics-enable
-ff90-intrinsics-delete -ff90-intrinsics-hide
-ff90-intrinsics-disable -ff90-intrinsics-enable

34 Using and Porting GNU Fortran

-fgnu-intrinsics-delete -fgnu-intrinsics-hide
-fgnu-intrinsics—-disable -fgnu-intrinsics-enable
—fmil-intrinsics-delete —-fmil-intrinsics-hide
—fmil-intrinsics-disable -fmil-intrinsics-enable
—funix-intrinsics—-delete -funix-intrinsics-hide
—funix-intrinsics—-disable -funix-intrinsics-enable
—-fvxt-intrinsics-delete —-fvxt-intrinsics-hide
-fvxt-intrinsics-disable -fvxt-intrinsics-enable
-ffixed-line-length-n -ffixed-line-length-none

Warning Options
See Section 5.5 [Options to Request or Suppress Warnings|, page 43.

-fsyntax-only -pedantic -pedantic-errors -fpedantic
-w -Wno-globals -Wimplicit -Wunused -Wuninitialized
-Wall -Wsurprising
-Werror -W

Debugging Options
See Section 5.6 [Options for Debugging Your Program or GCC], page 46.

)
Optimization Options
See Section 5.7 [Options that Control Optimization|, page 47.

-malign-double

-ffloat-store -fforce-mem -fforce-addr -fno-inline
-ffast-math -fstrength-reduce -frerun-cse-after-loop
-funsafe-math-optimizations -fno-trapping-math
-fexpensive-optimizations -fdelayed-branch
-fschedule-insns —-fschedule-insn2 -fcaller-saves
-funroll-loops —-funroll-all-loops
-fno-move-all-movables -fno-reduce-all-givs
-fno-rerun-loop-opt

Directory Options
See Section 5.9 [Options for Directory Search], page 50.

-Idir -I-

Code Generation Options
See Section 5.10 [Options for Code Generation Conventions|, page 50.

-fno-automatic -finit-local-zero -fno-f2c
-ff2c-library -fno-underscoring -fno-ident
-fpcc-struct-return -freg-struct-return
-fshort-double -fno-common -fpack-struct
-fzeros -fno-second-underscore
-femulate-complex
-falias-check -fargument-alias
-fargument-noalias -fno-argument-noalias-global
-fno-globals -fflatten-arrays
-fbounds-check -ffortran-bounds-check

Chapter 5: GNU Fortran Command Options 35

5.2 Options Controlling the Kind of Output

Compilation can involve as many as four stages: preprocessing, code generation (often
what is really meant by the term “compilation”), assembly, and linking, always in that
order. The first three stages apply to an individual source file, and end by producing an
object file; linking combines all the object files (those newly compiled, and those specified
as input) into an executable file.

For any given input file, the file name suffix determines what kind of program is contained
in the file—that is, the language in which the program is written is generally indicated by the
suffix. Suffixes specific to GNU Fortran are listed below. See section “Options Controlling
the Kind of Output” in Using the GNU Compiler Collection (GCC), for information on
suffixes recognized by GNU CC.

file. f
file.for

file.FOR Fortran source code that should not be preprocessed.

Such source code cannot contain any preprocessor directives, such as #include,
#define, #if, and so on.

You can force ‘. £’ files to be preprocessed by cpp by using ‘-x £77-cpp-input’.
See Section 22.4 [LEX], page 349.

file.F
file.fpp

file.FPP Fortran source code that must be preprocessed (by the C preprocessor cpp,
which is part of GNU CC).

Note that preprocessing is not extended to the contents of files included by the
INCLUDE directive—the #include preprocessor directive must be used instead.

file.r Ratfor source code, which must be preprocessed by the ratfor
command, which is available separately (as it is not yet part of the
GNU Fortran distribution). One version in Fortran, adapted for use
with g77 is at ftp://members.aol.com/n8tm/rat7.uue (of uncer-
tain copyright status). Another, public domain version in C is at
http://sepwww.stanford.edu/sep/prof/ratfor.shar.2.

UNIX users typically use the ‘file. £’ and ‘file.F’ nomenclature. Users of other operating
systems, especially those that cannot distinguish upper-case letters from lower-case letters
in their file names, typically use the ‘file.for’ and ‘file. fpp’ nomenclature.

Use of the preprocessor cpp allows use of C-like constructs such as #define and
#include, but can lead to unexpected, even mistaken, results due to Fortran’s source file
format. It is recommended that use of the C preprocessor be limited to #include and, in
conjunction with #define, only #if and related directives, thus avoiding in-line macro
expansion entirely. This recommendation applies especially when using the traditional
fixed source form. With free source form, fewer unexpected transformations are likely to
happen, but use of constructs such as Hollerith and character constants can nevertheless
present problems, especially when these are continued across multiple source lines. These

36 Using and Porting GNU Fortran

problems result, primarily, from differences between the way such constants are interpreted
by the C preprocessor and by a Fortran compiler.

Another example of a problem that results from using the C preprocessor is that a Fortran
comment line that happens to contain any characters “interesting” to the C preprocessor,
such as a backslash at the end of the line, is not recognized by the preprocessor as a
comment line, so instead of being passed through “raw”, the line is edited according to the
rules for the preprocessor. For example, the backslash at the end of the line is removed,
along with the subsequent newline, resulting in the next line being effectively commented
out—unfortunate if that line is a non-comment line of important code!

Note: The ‘-traditional’ and ‘-undef’ flags are supplied to cpp by default, to help
avoid unpleasant surprises. See section “Options Controlling the Preprocessor” in Using the
GNU Compiler Collection (GCC). This means that ANSI C preprocessor features (such as
the ‘#’ operator) aren’t available, and only variables in the C reserved namespace (generally,
names with a leading underscore) are liable to substitution by C predefines. Thus, if you
want to do system-specific tests, use, for example, ‘#ifdef __linux__’ rather than ‘#ifdef
linux’. Use the ‘-v’ option to see exactly how the preprocessor is invoked.

Unfortunately, the ‘~traditional’ flag will not avoid an error from anything that cpp
sees as an unterminated C comment, such as:

C Some Fortran compilers accept /* as starting
C an inline comment.

See Section 9.2 [Trailing Comment], page 188.

The following options that affect overall processing are recognized by the g77 and gcc
commands in a GNU Fortran installation:

-fversion
Ensure that the g77 version of the compiler phase is reported, if run, and, start-
ing in egcs version 1.1, that internal consistency checks in the ‘€771’ program
are run.

This option is supplied automatically when ‘-v’ or ‘~-verbose’ is specified as a
command-line option for g77 or gcc and when the resulting commands compile
Fortran source files.

In GCC 3.1, this is changed back to the behaviour gcc displays for ‘. ¢’ files.

-fset-g77-defaults
Version info: This option was obsolete as of egcs version 1.1. The effect is
instead achieved by the lang_init_options routine in ‘gcc/gcc/f/com.c’.

Set up whatever gcc options are to apply to Fortran compilations, and avoid
running internal consistency checks that might take some time.

This option is supplied automatically when compiling Fortran code via the g77
or gcc command. The description of this option is provided so that users seeing
it in the output of, say, ‘g77 -v’ understand why it is there.

Also, developers who run £771 directly might want to specify it by hand to get
the same defaults as they would running £771 via g77 or gcc However, such
developers should, after linking a new £771 executable, invoke it without this
option once, e.g. via ./f771 -quiet < /dev/null, to ensure that they have not

Chapter 5: GNU Fortran Command Options 37

introduced any internal inconsistencies (such as in the table of intrinsics) before
proceeding—g77 will crash with a diagnostic if it detects an inconsistency.

-fno-silent
Print (to stderr) the names of the program units as they are compiled, in a
form similar to that used by popular UNIX £77 implementations and f2c

See section “Options Controlling the Kind of Output” in Using the GNU Compiler
Collection (GCC), for information on more options that control the overall operation of the
gcc command (and, by extension, the g77 command).

5.3 Shorthand Options

The following options serve as “shorthand” for other options accepted by the compiler:

-fugly Note: This option is no longer supported. The information, below, is provided
to aid in the conversion of old scripts.
Specify that certain “ugly” constructs are to be quietly accepted. Same as:
-fugly-args -fugly-assign -fugly-assumed
-fugly-comma -fugly-complex -fugly-init
-fugly-logint
These constructs are considered inappropriate to use in new or well-maintained
portable Fortran code, but widely used in old code. See Section 9.9 [Disten-
sions], page 196, for more information.
-fno-ugly
Specify that all “ugly” constructs are to be noisily rejected. Same as:
-fno-ugly-args -fno-ugly-assign -fno-ugly-assumed
-fno-ugly-comma -fno-ugly-complex —-fno-ugly-init
-fno-ugly-logint
See Section 9.9 [Distensions|, page 196, for more information.

-ff66 Specify that the program is written in idiomatic FORTRAN 66. Same as
‘~fonetrip -fugly-assumed’.
The ‘-fno-f66’ option is the inverse of ‘-ff66’. As such, it is the same as
‘~fno-onetrip -fno-ugly-assumed’.
The meaning of this option is likely to be refined as future versions of g77
provide more compatibility with other existing and obsolete Fortran implemen-
tations.

-f£77 Specify that the program is written in idiomatic UNIX FORTRAN 77
and/or the dialect accepted by the f2c¢ product. Same as ‘-fbackslash
-fno-typeless-boz’.

The meaning of this option is likely to be refined as future versions of g77
provide more compatibility with other existing and obsolete Fortran implemen-
tations.

-fno-£77 The ‘-fno-f77’ option is not the inverse of ‘~f£77’. It specifies that the program
is not written in idiomatic UNIX FORTRAN 77 or £2c but in a more widely
portable dialect. ‘-fno-£77’ is the same as ‘~fno-backslash’.

38 Using and Porting GNU Fortran

The meaning of this option is likely to be refined as future versions of g77
provide more compatibility with other existing and obsolete Fortran implemen-
tations.

5.4 Options Controlling Fortran Dialect
The following options control the dialect of Fortran that the compiler accepts:

-ffree-form

-fno-fixed-form
Specify that the source file is written in free form (introduced in Fortran 90)
instead of the more-traditional fixed form.

-f£90 Allow certain Fortran-90 constructs.

This option controls whether certain Fortran 90 constructs are recognized.
(Other Fortran 90 constructs might or might not be recognized depending on
other options such as ‘-fvxt’, ‘-ff90-intrinsics-enable’, and the current
level of support for Fortran 90.)

See Section 9.7 [Fortran 90], page 194, for more information.

-fvxt Specify the treatment of certain constructs that have different meanings de-
pending on whether the code is written in GNU Fortran (based on FORTRAN
77 and akin to Fortran 90) or VXT Fortran (more like VAX FORTRAN).

The default is ‘-fno-vxt’. ‘~fvxt’ specifies that the VXT Fortran interpreta-
tions for those constructs are to be chosen.

See Section 9.6 [VXT Fortran|, page 193, for more information.

-fdollar-ok
Allow ‘$’ as a valid character in a symbol name.

-fno-backslash
Specify that ‘\’ is not to be specially interpreted in character and Hollerith
constants a la C and many UNIX Fortran compilers.

For example, with ‘-fbackslash’ in effect, ‘A\nB’ specifies three characters,
with the second one being newline. With ‘-fno-backslash’, it specifies four
characters, ‘A’, ‘\’, ‘n’, and ‘B’.

Note that g77 implements a fairly general form of backslash processing that is
incompatible with the narrower forms supported by some other compilers. For
example, ‘?A\003B’’ is a three-character string in g77 whereas other compilers
that support backslash might not support the three-octal-digit form, and thus
treat that string as longer than three characters.

See Section 15.5.1 [Backslash in Constants], page 291, for information on why
‘~fbackslash’ is the default instead of ‘~fno-backslash’.

-fno-ugly-args
Disallow passing Hollerith and typeless constants as actual arguments (for ex-
ample, ‘CALL FOO(4HABCD)’).

See Section 9.9.1 [Ugly Implicit Argument Conversion|, page 196, for more
information.

Chapter 5: GNU Fortran Command Options 39

-fugly-assign
Use the same storage for a given variable regardless of whether it is used to hold
an assigned-statement label (as in ‘ASSIGN 10 TO I’) or used to hold numeric
data (asin ‘I = 3’).
See Section 9.9.7 [Ugly Assigned Labels|, page 199, for more information.

-fugly-assumed
Assume any dummy array with a final dimension specified as ‘1’ is really an
assumed-size array, as if ‘*’ had been specified for the final dimension instead
of ‘1°.
For example, ‘DIMENSION X(1)’ is treated as if it had read ‘DIMENSION X (*)’.
See Section 9.9.2 [Ugly Assumed-Size Arrays|, page 196, for more information.

-fugly-comma
In an external-procedure invocation, treat a trailing comma in the argument
list as specification of a trailing null argument, and treat an empty argument
list as specification of a single null argument.

For example, ‘CALL F00(,)’ is treated as ‘CALL FOO(%VAL(0), %VAL(0))’. That
is, two null arguments are specified by the procedure call when ‘~fugly-comma’
is in force. And ‘F = FUNC()’ is treated as ‘F = FUNC(%VAL(0))’.

The default behavior, ‘~fno-ugly-comma’, is to ignore a single trailing comma
in an argument list. So, by default, ‘CALL FOO(X,)’ is treated exactly the same
as ‘CALL FOO(X)’.

See Section 9.9.4 [Ugly Null Arguments|, page 197, for more information.

-fugly-complex
Do not complain about ‘REAL(expr)’ or ‘AIMAG(expr)’ when expr is a
COMPLEX type other than COMPLEX(KIND=1)—usually this is used to permit
COMPLEX (KIND=2) (DOUBLE COMPLEX) operands.

The ‘-f£90’ option controls the interpretation of this construct.
See Section 9.9.3 [Ugly Complex Part Extraction], page 197, for more informa-
tion.

-fno-ugly-init
Disallow use of Hollerith and typeless constants as initial values (in PARAMETER
and DATA statements), and use of character constants to initialize numeric types
and vice versa.
For example, ‘DATA I/’°F’/, CHRVAR/65/, J/4HABCD/’ is disallowed by
‘~fno-ugly-init’.
See Section 9.9.5 [Ugly Conversion of Initializers], page 198, for more informa-
tion.

-fugly-logint
Treat INTEGER and LOGICAL variables and expressions as potential stand-ins for
each other.

For example, automatic conversion between INTEGER and LOGICAL is enabled,
for many contexts, via this option.

See Section 9.9.6 [Ugly Integer Conversions|, page 198, for more information.

40

—-fonetrip

Using and Porting GNU Fortran

Executable iterative DO loops are to be executed at least once each time they
are reached.

ANSI FORTRAN 77 and more recent versions of the Fortran standard specify
that the body of an iterative DO loop is not executed if the number of iterations
calculated from the parameters of the loop is less than 1. (For example, ‘D0 10
I=1, 0.) Such aloop is called a zero-trip loop.

Prior to ANSI FORTRAN 77, many compilers implemented DO loops such that
the body of a loop would be executed at least once, even if the iteration count
was zero. Fortran code written assuming this behavior is said to require one-
trip loops. For example, some code written to the FORTRAN 66 standard
expects this behavior from its DO loops, although that standard did not specify
this behavior.

The ‘~fonetrip’ option specifies that the source file(s) being compiled require
one-trip loops.

This option affects only those loops specified by the (iterative) DO statement
and by implied-D0 lists in I/O statements. Loops specified by implied-D0 lists
in DATA and specification (non-executable) statements are not affected.

-ftypeless-boz

Specifies that prefix-radix non-decimal constants, such as ‘Z’>ABCD’’, are type-
less instead of INTEGER (KIND=1).

You can test for yourself whether a particular compiler treats the prefix form
as INTEGER (KIND=1) or typeless by running the following program:

EQUIVALENCE (I, R)

R = Z’ABCD1234’

J = Z’ABCD1234°

IF (J .EQ. I) PRINT *, ’Prefix form is TYPELESS’
IF (J .NE. I) PRINT *, ’Prefix form is INTEGER’
END

Reports indicate that many compilers process this form as INTEGER(KIND=1),
though a few as typeless, and at least one based on a command-line option
specifying some kind of compatibility.

-fintrin-case-initcap
-fintrin-case—upper
-fintrin-case-lower
-fintrin-case-any

Specify expected case for intrinsic names. ‘-fintrin-case-lower’ is the de-
fault.

-fmatch-case-initcap
-fmatch-case-upper
-fmatch-case-lower
-fmatch-case-any

Specify expected case for keywords. ‘~fmatch-case-lower’ is the default.

Chapter 5: GNU Fortran Command Options 41

-fsource-case-upper

-fsource-case-lower

-fsource-case-preserve
Specify whether source text other than character and Hollerith constants
is to be translated to uppercase, to lowercase, or preserved as is.
‘~-fsource-case-lower’ is the default.

-fsymbol-case-initcap

-fsymbol-case-upper

-fsymbol-case-lower

-fsymbol-case-any
Specify valid cases for user-defined symbol names. ‘~fsymbol-case-any’ is the
default.

-fcase-strict-upper
Same as ‘-fintrin-case-upper -fmatch-case-upper -fsource-case-preservel]
-fsymbol-case-upper’. (Requires all pertinent source to be in uppercase.)

-fcase-strict-lower
Same as ‘~fintrin-case-lower —-fmatch-case-lower -fsource-case-preservel]
-fsymbol-case-lower’. (Requires all pertinent source to be in lowercase.)

-fcase-initcap
Same as ‘-fintrin-case-initcap -fmatch-case-initcap -fsource-case-preservel
-fsymbol-case-initcap’. (Requires all pertinent source to be in initial
capitals, as in ‘Print *,SqRt (Value)’.)

-fcase-upper
Same as ‘-fintrin-case-any -fmatch-case-any -fsource-case-upper
-fsymbol-case-any’. (Maps all pertinent source to uppercase.)

-fcase-lower
Same as ‘-fintrin-case-any -fmatch-case-any -fsource-case-lower
-fsymbol-case-any’. (Maps all pertinent source to lowercase.)

-fcase-preserve
Same as ‘-fintrin-case-any -fmatch-case-any -fsource-case-preserve
-fsymbol-case-any’. (Preserves all case in user-defined symbols, while
allowing any-case matching of intrinsics and keywords. For example, ‘call
Foo(i,I)’ would pass two different variables named ‘i’ and ‘I’ to a procedure
named ‘Foo’.)

-fbadu77-intrinsics-delete

-fbadu77-intrinsics-hide

-fbadu77-intrinsics-disable

-fbadu77-intrinsics-enable
Specify status of UNIX intrinsics having inappropriate forms.
‘~fbadu77-intrinsics-enable’ is the default. See Section 10.5.1
[Intrinsic Groups|, page 206.

42 Using and Porting GNU Fortran

-ff2c-intrinsics-delete

-ff2c-intrinsics-hide

-ff2c-intrinsics-disable

-ff2c-intrinsics-enable
Specify status of f2c-specific intrinsics. ‘-ff2c-intrinsics-enable’ is the de-
fault. See Section 10.5.1 [Intrinsic Groups|, page 206.

-ff90-intrinsics-delete

-ff90-intrinsics-hide

-ff90-intrinsics-disable

-ff90-intrinsics-enable
Specify status of F90-specific intrinsics. ‘-ff90-intrinsics-enable’ is the
default. See Section 10.5.1 [Intrinsic Groups|, page 206.

-fgnu-intrinsics-delete

-fgnu-intrinsics-hide

-fgnu-intrinsics-disable

-fgnu-intrinsics-enable
Specify status of Digital’s COMPLEX-related intrinsics. ‘~-fgnu-intrinsics-enable’]
is the default. See Section 10.5.1 [Intrinsic Groups], page 206.

-fmil-intrinsics-delete

-fmil-intrinsics-hide

-fmil-intrinsics-disable

-fmil-intrinsics-enable
Specify status of MIL-STD-1753-specific intrinsics. ‘-fmil-intrinsics-enable’l]
is the default. See Section 10.5.1 [Intrinsic Groups], page 206.

—-funix-intrinsics-delete

-funix-intrinsics-hide

-funix-intrinsics-disable

—-funix-intrinsics-enable
Specify status of UNIX intrinsics. ‘-funix-intrinsics-enable’ is the default.
See Section 10.5.1 [Intrinsic Groups|, page 206.

-fvxt-intrinsics-delete

-fvxt-intrinsics-hide

-fvxt-intrinsics-disable

—-fvxt-intrinsics-enable
Specify status of VXT intrinsics. ‘~fvxt-intrinsics-enable’ is the default.
See Section 10.5.1 [Intrinsic Groups|, page 206.

-ffixed-line-length-n
Set column after which characters are ignored in typical fixed-form lines in the
source file, and through which spaces are assumed (as if padded to that length)
after the ends of short fixed-form lines.

Popular values for n include 72 (the standard and the default), 80 (card im-
age), and 132 (corresponds to “extended-source” options in some popular com-
pilers). n may be ‘none’, meaning that the entire line is meaningful and
that continued character constants never have implicit spaces appended to

Chapter 5: GNU Fortran Command Options 43

them to fill out the line. ‘-ffixed-line-length-0’ means the same thing
as ‘-ffixed-line-length-none’.

See Section 9.1 [Source Form]|, page 187, for more information.

5.5 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently
erroneous but which are risky or suggest there might have been an error.

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘-Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

These options control the amount and kinds of warnings produced by GNU Fortran:

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-pedantic
Issue warnings for uses of extensions to ANSI FORTRAN 77. ‘-pedantic’ also
applies to C-language constructs where they occur in GNU Fortran source files,
such as use of ‘\e’ in a character constant within a directive like ‘#include’.

Valid ANSI FORTRAN 77 programs should compile properly with or without
this option. However, without this option, certain GNU extensions and tradi-
tional Fortran features are supported as well. With this option, many of them
are rejected.

4

Some users try to use ‘-pedantic’ to check programs for strict ANSI confor-
mance. They soon find that it does not do quite what they want—it finds some
non-ANSI practices, but not all. However, improvements to g77 in this area
are welcome.

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-fpedantic
Like ‘-pedantic’, but applies only to Fortran constructs.

-w Inhibit all warning messages.

-Wno-globals
Inhibit warnings about use of a name as both a global name (a subroutine,
function, or block data program unit, or a common block) and implicitly as the
name of an intrinsic in a source file.

Also inhibit warnings about inconsistent invocations and/or definitions of global
procedures (function and subroutines). Such inconsistencies include different
numbers of arguments and different types of arguments.

-Wimplicit
Warn whenever a variable, array, or function is implicitly declared. Has an
effect similar to using the IMPLICIT NONE statement in every program unit.

44

Using and Porting GNU Fortran

(Some Fortran compilers provide this feature by an option named ‘-u’ or
‘/WARNINGS=DECLARATIONSK)

-Wunused Warn whenever a variable is unused aside from its declaration.

-Wuninitialized

-Wall

The remaining ‘-W. ..

Warn whenever an automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation, because they re-
quire data-flow information that is computed only when optimizing. If you
don’t specify ‘-0’, you simply won’t get these warnings.

These warnings occur only for variables that are candidates for register allo-
cation. Therefore, they do not occur for a variable whose address is taken, or
whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for arrays,
even when they are in registers.

Note that there might be no warning about a variable that is used only to
compute a value that itself is never used, because such computations may be
deleted by data-flow analysis before the warnings are printed.

These warnings are made optional because GNU Fortran is not smart enough
to see all the reasons why the code might be correct despite appearing to have
an error. Here is one example of how this can happen:

SUBROUTINE DISPAT(J)

IF (J.EQ.1) I=1

IF (J.EQ.2) I=4

IF (J.EQ.3) I=5

CALL F0O(I)

END

If the value of J is always 1, 2 or 3, then I is always initialized, but GNU
Fortran doesn’t know this. Here is another common case:
SUBROUTINE MAYBE(FLAG)

LOGICAL FLAG
IF (FLAG) VALUE = 9.4

IF (FLAG) PRINT *, VALUE
END

This has no bug because VALUE is used only if it is set.

The ‘-Wunused’ and ‘-Wuninitialized’ options combined. These are all the
options which pertain to usage that we recommend avoiding and that we believe
is easy to avoid. (As more warnings are added to g77 some might be added to
the list enabled by ‘-Wall’.)

?

options are not implied by ‘~Wall’ because they warn about

constructions that we consider reasonable to use, on occasion, in clean programs.

-Wsurprising

Warn about “suspicious” constructs that are interpreted by the compiler in a
way that might well be surprising to someone reading the code. These dif-
ferences can result in subtle, compiler-dependent (even machine-dependent)
behavioral differences. The constructs warned about include:

Chapter 5: GNU Fortran Command Options 45

e Expressions having two arithmetic operators in a row, such as ‘X*-Y’.
Such a construct is nonstandard, and can produce unexpected results in
more complicated situations such as ‘X*x-Y*Z’. g77 along with many
other compilers, interprets this example differently than many program-
mers, and a few other compilers. Specifically, g77 interprets ‘Xx*-Y*Z’
as ‘(X*#x(-Y))*Z’, while others might think it should be interpreted as
Xokk (- (Y*Z)) .

A revealing example is the constant expression ‘2**-2x1.’) which g77 eval-
uates to .25, while others might evaluate it to 0., the difference resulting
from the way precedence affects type promotion.

(The ‘-fpedantic’ option also warns about expressions having two arith-
metic operators in a row.)

e Expressions with a unary minus followed by an operand and then a binary
operator other than plus or minus. For example, ‘-2**2’ produces a warn-
ing, because the precedence is ‘= (2**2)’, yielding -4, not ‘(-2) **2’, which
yields 4, and which might represent what a programmer expects.

An example of an expression producing different results in a surprising way
is ‘=I*S’, where I holds the value ‘-2147483648” and S holds ‘0.5’. On
many systems, negating I results in the same value, not a positive number,
because it is already the lower bound of what an INTEGER (KIND=1) variable
can hold. So, the expression evaluates to a positive number, while the
“expected” interpretation, ‘(-I)*S’, would evaluate to a negative number.

Even cases such as ‘-I*J’ produce warnings, even though, in most config-
urations and situations, there is no computational difference between the
results of the two interpretations—the purpose of this warning is to warn
about differing interpretations and encourage a better style of coding, not
to identify only those places where bugs might exist in the user’s code.

e DO loops with DO variables that are not of integral type—that is, using REAL
variables as loop control variables. Although such loops can be written to
work in the “obvious” way, the way g77 is required by the Fortran standard
to interpret such code is likely to be quite different from the way many
programmers expect. (This is true of all DO loops, but the differences are
pronounced for non-integral loop control variables.)

See Section 14.3 [Loops], page 255, for more information.

-Werror Make all warnings into errors.
-W Turns on “extra warnings” and, if optimization is specified via ‘-0’, the
‘~Wuninitialized’ option. (This might change in future versions of g77
“Extra warnings” are issued for:
e Unused parameters to a procedure (when ‘~Wunused’ also is specified).
e Overflows involving floating-point constants (not available for certain con-
figurations).

See section “Options to Request or Suppress Warnings” in Using the GNU Compiler
Collection (GCC), for information on more options offered by the GBE shared by g77 gcc
and other GNU compilers.

46 Using and Porting GNU Fortran

Some of these have no effect when compiling programs written in Fortran:

-Wcomment
-Wformat

-Wparentheses
-Wswitch

-Wtraditional
-Wshadow

-Wid-clash-len

-Wlarger-than-len

-Wconversion

-Waggregate-return

-Wredundant-decls
These options all could have some relevant meaning for GNU Fortran programs,
but are not yet supported.

5.6 Options for Debugging Your Program or GNU Fortran

GNU Fortran has various special options that are used for debugging either your program
or g77

-g Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF). GDB can work with this debugging information.

A sample debugging session looks like this (note the use of the breakpoint):

$ cat gdb.f
PROGRAM PROG
DIMENSION A(10)
DATA A /1.,2.,3.,4.,5.,6.,7.,8.,9.,10./
A(5) = 4.
PRINT*,A
END
$ g77 -g -0 gdb.f
$ gdb a.out

(gdb) break MAIN__

Breakpoint 1 at 0x8048e96: file gdb.f, line 4.
(gdb) run

Starting program: /home/toon/g77-bugs/./a.out
Breakpoint 1, MAIN__ () at gdb.f:4

4 A(5) = 4.

Current language: auto; currently fortran
(gdb) print a(b)

$1 =5

(gdb) step

5 PRINT*,A

(gdb) print a(b)

Chapter 5: GNU Fortran Command Options 47

$2 = 4

One could also add the setting of the breakpoint and the first run command to
the file ‘. gdbinit’ in the current directory, to simplify the debugging session.

See section “Options for Debugging Your Program or GCC” in Using the GNU Compiler
Collection (GCC), for more information on debugging options.

5.7 Options That Control Optimization

Most Fortran users will want to use no optimization when developing and testing pro-
grams, and use ‘-0’ or ‘-02’ when compiling programs for late-cycle testing and for pro-
duction use. However, note that certain diagnostics—such as for uninitialized variables—
depend on the flow analysis done by ‘-0, i.e. you must use ‘-0’ or ‘-02’ to get such diag-
nostics.

The following flags have particular applicability when compiling Fortran programs:

-malign-double
(Intel x86 architecture only.)

Noticeably improves performance of g77 programs making heavy use of
REAL (KIND=2) (DOUBLE PRECISION) data on some systems. In particular,
systems using Pentium, Pentium Pro, 586, and 686 implementations of
the 1386 architecture execute programs faster when REAL(KIND=2) (DOUBLE
PRECISION) data are aligned on 64-bit boundaries in memory.

This option can, at least, make benchmark results more consistent across various
system configurations, versions of the program, and data sets.

Note: The warning in the gcc documentation about this option does not apply,
generally speaking, to Fortran code compiled by g77

See Section 14.6.1 [Aligned Data|, page 265, for more information on alignment
issues.

Also also note: The negative form of ‘-malign-double’ is
‘-mno-align-double’, not ‘~benign-double’.

-ffloat-store
Might help a Fortran program that depends on exact IEEE conformance on
some machines, but might slow down a program that doesn’t.

This option is effective when the floating-point unit is set to work in IEEE 854
‘extended precision’—as it typically is on x86 and m68k GNU systems—rather
than TEEE 754 double precision. ‘-ffloat-store’ tries to remove the extra
precision by spilling data from floating-point registers into memory and this
typically involves a big performance hit. However, it doesn’t affect intermediate
results, so that it is only partially effective. ‘Excess precision’ is avoided in code
like:

a=b+c

d =ax*xe

but not in code like:

48 Using and Porting GNU Fortran

d=(+c) *xe

For another, potentially better, way of controlling the precision, see
Section 14.4.10 [Floating-point precision], page 263.

-fforce-mem
-fforce-addr
Might improve optimization of loops.

-fno-inline
Don’t compile statement functions inline. Might reduce the size of a program
unit—which might be at expense of some speed (though it should compile
faster). Note that if you are not optimizing, no functions can be expanded
inline.

-ffast-math
Might allow some programs designed to not be too dependent on
IEEE behavior for floating-point to run faster, or die trying. Sets
‘~funsafe-math-optimizations’, and ‘~fno-trapping-math’.

-funsafe-math-optimizations
Allow optimizations that may be give incorrect results for certain IEEE inputs.

-fno-trapping-math
Allow the compiler to assume that floating-point arithmetic will not generate
traps on any inputs. This is useful, for example, when running a program using
IEEE "non-stop" floating-point arithmetic.

-fstrength-reduce
Might make some loops run faster.

—-frerun-cse-after-loop
-fexpensive-optimizations
-fdelayed-branch
-fschedule-insns
-fschedule-insns2
-fcaller-saves
Might improve performance on some code.

-funroll-loops
Typically improves performance on code using iterative DO loops by unrolling
them and is probably generally appropriate for Fortran, though it is not turned
on at any optimization level. Note that outer loop unrolling isn’t done specif-
ically; decisions about whether to unroll a loop are made on the basis of its
instruction count.

Chapter 5: GNU Fortran Command Options 49

Also, no ‘loop discovery’! is done, so only loops written with DO benefit from
loop optimizations, including—but not limited to—unrolling. Loops written
with IF and GOTO are not currently recognized as such. This option unrolls
only iterative DO loops, not DO WHILE loops.

-funroll-all-loops
Probably improves performance on code using DO WHILE loops by unrolling them
in addition to iterative DO loops. In the absence of DO WHILE, this option is
equivalent to ‘~funroll-loops’ but possibly slower.

-fno-move—-all-movables

-fno-reduce-all-givs

-fno-rerun-loop-opt
Version info: These options are not supported by versions of g77 based on gcc
version 2.8.

Each of these might improve performance on some code.

Analysis of Fortran code optimization and the resulting optimizations
triggered by the above options were contributed by Toon Moene
(toon@moene.indiv.nluug.nl).

These three options are intended to be removed someday, once they have helped
determine the efficacy of various approaches to improving the performance of
Fortran code.

Please let us know how use of these options affects the performance of your
production code. We’re particularly interested in code that runs faster when
these options are disabled, and in non-Fortran code that benefits when they are
enabled via the above gcc command-line options.

See section “Options That Control Optimization” in Using the GNU Compiler Collection
(GCC), for more information on options to optimize the generated machine code.

5.8 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

See section “Options Controlling the Preprocessor” in Using the GNU Compiler Collec-
tion (GCC), for information on C preprocessor options.

Some of these options also affect how g77 processes the INCLUDE directive. Since this
directive is processed even when preprocessing is not requested, it is not described in this
section. See Section 5.9 [Options for Directory Search], page 50, for information on how
g77 processes the INCLUDE directive.

1 loop discovery refers to the process by which a compiler, or indeed any reader of a program, determines
which portions of the program are more likely to be executed repeatedly as it is being run. Such discovery
typically is done early when compiling using optimization techniques, so the “discovered” loops get more
attention—and more run-time resources, such as registers—from the compiler. It is easy to “discover”
loops that are constructed out of looping constructs in the language (such as Fortran’s D0). For some
programs, “discovering” loops constructed out of lower-level constructs (such as IF and GOTO) can lead
to generation of more optimal code than otherwise.

50 Using and Porting GNU Fortran

However, the INCLUDE directive does not apply preprocessing to the contents of the
included file itself.

Therefore, any file that contains preprocessor directives (such as #include, #define, and
#if) must be included via the #include directive, not via the INCLUDE directive. Therefore,
any file containing preprocessor directives, if included, is necessarily included by a file that
itself contains preprocessor directives.

5.9 Options for Directory Search

These options affect how the cpp preprocessor searches for files specified via the #include
directive. Therefore, when compiling Fortran programs, they are meaningful when the
preprocessor is used.

Some of these options also affect how g77 searches for files specified via the INCLUDE
directive, although files included by that directive are not, themselves, preprocessed. These
options are:

I

-Idir These affect interpretation of the INCLUDE directive (as well as of the #include
directive of the cpp preprocessor).

Note that ‘-Idir’ must be specified without any spaces between ‘-1’ and the
directory name—that is, ‘~-Ifoo/bar’ is valid, but ‘-I foo/bar’ is rejected by
the g77 compiler (though the preprocessor supports the latter form). Also note
that the general behavior of ‘-1’ and INCLUDE is pretty much the same as of ‘-I’
with #include in the cpp preprocessor, with regard to looking for ‘header.gcc’
files and other such things.

See section “Options for Directory Search” in Using the GNU Compiler Collec-
tion (GCC), for information on the ‘~I’ option.

5.10 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code gen-
eration.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would
be ‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the
default. You can figure out the other form by either removing ‘no-’ or adding it.

-fno-automatic
Treat each program unit as if the SAVE statement was specified for every local
variable and array referenced in it. Does not affect common blocks. (Some
Fortran compilers provide this option under the name ‘-static’.)

-finit-local-zero
Specify that variables and arrays that are local to a program unit (not in a
common block and not passed as an argument) are to be initialized to binary
Z€roS.

Chapter 5: GNU Fortran Command Options 51

-fno-f2c

Since there is a run-time penalty for initialization of variables that are not given
the SAVE attribute, it might be a good idea to also use ‘~fno-automatic’ with
‘~-finit-local-zero’.

Do not generate code designed to be compatible with code generated by f2c
use the GNU calling conventions instead.

The £2c calling conventions require functions that return type REAL (KIND=1)
to actually return the C type double, and functions that return type COMPLEX
to return the values via an extra argument in the calling sequence that points
to where to store the return value. Under the GNU calling conventions, such
functions simply return their results as they would in GNU C—REAL (KIND=1)
functions return the C type float, and COMPLEX functions return the GNU C
type complex (or its struct equivalent).

This does not affect the generation of code that interfaces with the libg2c
library.

However, because the 1ibg2c library uses £2c calling conventions, g77 rejects
attempts to pass intrinsics implemented by routines in this library as actual
arguments when ‘~fno-f2c’ is used, to avoid bugs when they are actually called
by code expecting the GNU calling conventions to work.

For example, ‘INTRINSIC ABS;CALL FOO(ABS)’ is rejected when ‘-fno-f2c’ is
in force. (Future versions of the g77 run-time library might offer routines that
provide GNU-callable versions of the routines that implement the £2c¢ intrinsics
that may be passed as actual arguments, so that valid programs need not be
rejected when ‘~fno-f2c’ is used.)

Caution: If ‘~fno-f2c’ is used when compiling any source file used in a program,
it must be used when compiling all Fortran source files used in that program.

—-ff2c-library

Specify that use of 1ibg2c (or the original 1ibf2c) is required. This is the
default for the current version of g77

Currently it is not valid to specify ‘~fno-f2c-1library’. This option is provided
so users can specify it in shell scripts that build programs and libraries that
require the 1ibf2c library, even when being compiled by future versions of g77
that might otherwise default to generating code for an incompatible library.

-fno-underscoring

Do not transform names of entities specified in the Fortran source file by ap-
pending underscores to them.

With ‘-funderscoring’ in effect, g77 appends two underscores to names with
underscores and one underscore to external names with no underscores. (g77
also appends two underscores to internal names with underscores to avoid nam-
ing collisions with external names. The ‘~fno-second-underscore’ option dis-
ables appending of the second underscore in all cases.)

This is done to ensure compatibility with code produced by many UNIX Fortran
compilers, including £2c¢ which perform the same transformations.

52

Using and Porting GNU Fortran

Use of ‘~fno-underscoring’ is not recommended unless you are experimenting
with issues such as integration of (GNU) Fortran into existing system environ-
ments (vis-a-vis existing libraries, tools, and so on).

For example, with ‘-funderscoring’, and assuming other defaults like
‘~fcase-lower’ and that ‘j ()’ and ‘max_count ()’ are external functions while
‘my_var’ and ‘lvar’ are local variables, a statement like

I =J(0 + MAX_COUNT (MY_VAR, LVAR)
is implemented as something akin to:
&lvar) ;

With ‘-fno-underscoring’, the same statement is implemented as:

i = j_(+ max_count__(&my_var

4

i =30 + max_count(&my_var, &lvar);
J y

Use of ‘-fno-underscoring’ allows direct specification of user-defined names
while debugging and when interfacing g77 code with other languages.

Note that just because the names match does not mean that the interface
implemented by g77 for an external name matches the interface implemented
by some other language for that same name. That is, getting code produced
by g77 to link to code produced by some other compiler using this or any
other method can be only a small part of the overall solution—getting the code
generated by both compilers to agree on issues other than naming can require
significant effort, and, unlike naming disagreements, linkers normally cannot
detect disagreements in these other areas.

Also, note that with ‘~fno-underscoring’, the lack of appended underscores in-
troduces the very real possibility that a user-defined external name will conflict
with a name in a system library, which could make finding unresolved-reference
bugs quite difficult in some cases—they might occur at program run time, and
show up only as buggy behavior at run time.

In future versions of g77 we hope to improve naming and linking issues so that
debugging always involves using the names as they appear in the source, even
if the names as seen by the linker are mangled to prevent accidental linking
between procedures with incompatible interfaces.

-fno-second-underscore

-fno-ident

-fzeros

Do not append a second underscore to names of entities specified in the Fortran
source file.

This option has no effect if ‘~fno-underscoring’ is in effect.

Otherwise, with this option, an external name such as ‘MAX_COUNT’ is imple-
mented as a reference to the link-time external symbol ‘max_count_’, instead
of ‘max_count__’

Ignore the ‘#ident’ directive.

Treat initial values of zero as if they were any other value.

As of version 0.5.18, g77 normally treats DATA and other statements that are
used to specify initial values of zero for variables and arrays as if no values were

Chapter 5: GNU Fortran Command Options 53

actually specified, in the sense that no diagnostics regarding multiple initializa-
tions are produced.

This is done to speed up compiling of programs that initialize large arrays to
ZEros.

Use ‘-fzeros’ to revert to the simpler, slower behavior that can catch multiple
initializations by keeping track of all initializations, zero or otherwise.

Caution: Future versions of g77 might disregard this option (and its nega-
tive form, the default) or interpret it somewhat differently. The interpretation
changes will affect only non-standard programs; standard-conforming programs
should not be affected.

-femulate-complex
Implement COMPLEX arithmetic via emulation, instead of using the facilities of
the gce back end that provide direct support of complex arithmetic.

(gcc had some bugs in its back-end support for complex arithmetic, due pri-
marily to the support not being completed as of version 2.8.1 and eges 1.1.2.)

Use ‘-femulate-complex’ if you suspect code-generation bugs, or experience
compiler crashes, that might result from g77 using the COMPLEX support in the
gcce back end. If using that option fixes the bugs or crashes you are seeing, that
indicates a likely g77 bugs (though, all compiler crashes are considered bugs),
so, please report it. (Note that the known bugs, now believed fixed, produced
compiler crashes rather than causing the generation of incorrect code.)

Use of this option should not affect how Fortran code compiled by g77 works
in terms of its interfaces to other code, e.g. that compiled by f2c

As of GCC version 3.0, this option is not necessary anymore.

Caution: Future versions of g77 might ignore both forms of this option.

-falias-check

-fargument-alias

—-fargument-noalias

-fno-argument-noalias-global
Version info: These options are not supported by versions of g77 based on gcc
version 2.8.

These options specify to what degree aliasing (overlap) is permitted between
arguments (passed as pointers) and COMMON (external, or public) storage.

The default for Fortran code, as mandated by the FORTRAN 77 and Fortran
90 standards, is ‘~fargument-noalias-global’. The default for code written
in the C language family is ‘~-fargument-alias’.

Note that, on some systems, compiling with ‘~fforce-addr’ in effect can pro-
duce more optimal code when the default aliasing options are in effect (and
when optimization is enabled).

See Section 14.4.7 [Aliasing Assumed To Work], page 259, for detailed informa-
tion on the implications of compiling Fortran code that depends on the ability
to alias dummy arguments.

54 Using and Porting GNU Fortran

-fno-globals
Disable diagnostics about inter-procedural analysis problems, such as disagree-
ments about the type of a function or a procedure’s argument, that might cause
a compiler crash when attempting to inline a reference to a procedure within a
program unit. (The diagnostics themselves are still produced, but as warnings,
unless ‘-Wno-globals’ is specified, in which case no relevant diagnostics are
produced.)

Further, this option disables such inlining, to avoid compiler crashes resulting
from incorrect code that would otherwise be diagnosed.

As such, this option might be quite useful when compiling existing, “working”
code that happens to have a few bugs that do not generally show themselves,
but which g77 diagnoses.

Use of this option therefore has the effect of instructing g77 to behave more
like it did up through version 0.5.19.1, when it paid little or no attention to
disagreements between program units about a procedure’s type and argument
information, and when it performed no inlining of procedures (except statement
functions).

Without this option, g77 defaults to performing the potentially inlining pro-
cedures as it started doing in version 0.5.20, but as of version 0.5.21, it also
diagnoses disagreements that might cause such inlining to crash the compiler
as (fatal) errors, and warns about similar disagreements that are currently be-
lieved to not likely to result in the compiler later crashing or producing incorrect
code.

-fflatten-arrays
Use back end’s C-like constructs (pointer plus offset) instead of its ARRAY_REF
construct to handle all array references.

Note: This option is not supported. It is intended for use only by g77 develop-
ers, to evaluate code-generation issues. It might be removed at any time.

-fbounds-check

-ffortran-bounds-check
Enable generation of run-time checks for array subscripts and substring start
and end points against the (locally) declared minimum and maximum values.

The current implementation uses the 1ibf2c library routine s_rnge to print
the diagnostic.

However, whereas f2c generates a single check per reference for a
multi-dimensional array, of the computed offset against the valid offset range
(0 through the size of the array), g77 generates a single check per subscript
expression. This catches some cases of potential bugs that £2¢ does not, such
as references to below the beginning of an assumed-size array.

g77 also generates checks for CHARACTER substring references, something f£2c
currently does not do.

Use the new ‘~ffortran-bounds-check’ option to specify bounds-checking for
only the Fortran code you are compiling, not necessarily for code written in
other languages.

Chapter 5: GNU Fortran Command Options 55

Note: To provide more detailed information on the offending subscript, g77
provides the 1ibg2c run-time library routine s_rnge with somewhat differently-
formatted information. Here’s a sample diagnostic:
Subscript out of range on file line 4, procedure rnge.f/bf.
Attempt to access the -6-th element of variable b[subscript-2-of-2].J}
Aborted

The above message indicates that the offending source line is line 4 of the file
‘rnge.f’, within the program unit (or statement function) named ‘bf’. The
offended array is named ‘b’. The offended array dimension is the second for a
two-dimensional array, and the offending, computed subscript expression was
‘-6,
For a CHARACTER substring reference, the second line has this appearance:

Attempt to access the 11-th element of variable a[start-substring].|]

This indicates that the offended CHARACTER variable or array is named ‘a’, the
offended substring position is the starting (leftmost) position, and the offending
substring expression is ‘11’.

(Though the verbage of s_rnge is not ideal for the purpose of the g77 compiler,
the above information should provide adequate diagnostic abilities to it users.)

See section “Options for Code Generation Conventions” in Using the GNU Compiler
Collection (GCC), for information on more options offered by the GBE shared by g77 gcc
and other GNU compilers.

Some of these do not work when compiling programs written in Fortran:

-fpcc-struct-return

-freg-struct-return
You should not use these except strictly the same way as you used them to
build the version of 1ibg2c with which you will be linking all code compiled by
g77 with the same option.

-fshort-double
This probably either has no effect on Fortran programs, or makes them act

loopy.

-fno-common
Do not use this when compiling Fortran programs, or there will be Trouble.

-fpack-struct
This probably will break any calls to the 1ibg2c library, at the very least, even
if it is built with the same option.

5.11 Environment Variables Affecting GNU Fortran

GNU Fortran currently does not make use of any environment variables to control its
operation above and beyond those that affect the operation of gcc.

See section “Environment Variables Affecting GCC” in Using the GNU Compiler Col-
lection (GCC), for information on environment variables.

56

Using and Porting GNU Fortran

Chapter 6: News About GNU Fortran 57

6 News About GNU Fortran

Changes made to recent versions of GNU Fortran are listed below, with the most recent
version first.

The changes are generally listed in order:
Code-generation and run-time-library bug-fixes
Compiler and run-time-library crashes involving valid code that have been fixed
New features
Fixes and enhancements to existing features
New diagnostics

Internal improvements

RN

Miscellany

This order is not strict—for example, some items involve a combination of these elements.

Note that two variants of g77 are tracked below. The egcs variant is described vis-a-vis
previous versions of egcs and/or an official FSF version, as appropriate. Note that all such
variants are obsolete as of July 1999 - the information is retained here only for its historical
value.

Therefore, egcs versions sometimes have multiple listings to help clarify how they differ
from other versions, though this can make getting a complete picture of what a particular
egcs version contains somewhat more difficult.

For information on bugs in the GCC-3.1 version of g77, see Section 15.2 [Known Bugs
In GNU Fortran], page 275.

An online, “live” version of this document (derived directly from the mainline, develop-
ment version of g77 within gcc) is available at http://www.gnu.org/software/gcc/onlinedocs/g77_|j
news.html.

The following information was last updated on 2002-04-13:

In GCC 3.1 (formerly known as g77-0.5.27) versus GCC 3.0:

e Problem Reports fixed (in chronological order of submission):

947 Data statement initialization with subscript of kind INTEGER*2

3743 Reference to intrinsic ‘ISHFT’ invalid

3807 Function BESJN(integer,double) problems

3957 g77 -pipe -x{f77-cpp-input sends output to stdout

4279 g77 -h" gives bogus output

4730 ICE on valid input using CALL EXIT(%VAL(...))

4752 g77 -v -¢ -xf77-version /dev/null -xnone causes ice

4885 BACKSPACE example that doesn’t work as of gee/g77-3.0.x

5122 g77 rejects accepted use of INTEGER*2 as type of DATA statement loop

index

58

Using and Porting GNU Fortran
5397 ICE on compiling source with 540 000 000 REAL array
5473 ICE on BESJN(integer*8,real)
5837 bug in loop unrolling

g77 now has its man page generated from the texinfo documentation, to guarantee that
it remains up to date.

g77 used to reject the following program on 32-bit targets:

PROGRAM PROG
DIMENSION A(140 000 000)
END

with the message:
prog.f: In program ‘prog’:
prog.f:2:
DIMENSION A(140 000 000)

Array ‘a’ at (7) is too large to handle

because 140 000 000 reals is larger than the largest bit-extent that can be expressed in
32 bits. However, bit-sizes never play a role after offsets have been converted to byte
addresses. Therefore this check has been removed. Note: On GNU/Linux systems one
has to compile programs that occupy more than 1 Gbyte statically, i.e. g77 -static

Based on work done by Juergen Pfeifer (juergen.pfeifer@gmx.net) libf2c is now a
shared library. One can still link in all objects with the program by specifying the
‘-static’ option.
Robert Anderson (rwa@alumni.princeton.edu) thought up a two line change that
enables g77 to compile such code as:

SUBROUTINE SUB(A, N)

DIMENSION N(2)

DIMENSION A(N(1),N(2))

ACL,1) = 1.

END
Note the use of array elements in the bounds of the adjustable array A.

George Helffrich (george@geo.titech.ac. jp) implemented a change in substring in-
dex checking (when specifying ‘~fbounds-check’) that permits the use of zero length
substrings of the form string(1:0).

Based on code developed by Pedro Vazquez (vazquez@penelope.iqm.unicamp.br),
the 1ibf2c library is now able to read and write files larger than 2 Gbyte on 32-bit
target machines, if the operating system supports this.

In 0.5.26, GCC 3.0 versus GCC 2.95:

When a REWIND was issued after a WRITE statement on an unformatted file, the
implicit truncation was performed by copying the truncated file to /tmp and copying
the result back. This has been fixed by using the ftruncate OS function. Thanks go
to the GAMESS developers for bringing this to our attention.

Chapter 6: News About GNU Fortran 59

Using options ‘-g’, ‘-ggdb’ or ‘~gdwarf [-2]’ (where appropriate for your target) now
also enables debugging information for COMMON BLOCK and EQUIVALENCE items
to be emitted. Thanks go to Andrew Vaught (andy@xena.eas.asu.edu) and George
Helffrich (george@geology.bristol.ac.uk) for fixing this longstanding problem.

It is not necessary anymore to use the option ‘~-femulate-complex’ to compile Fortran
code using COMPLEX arithmetic, even on 64-bit machines (like the Alpha). This will
improve code generation.

INTRINSIC arithmetic functions are now treated as routines that do not depend on
anything but their argument(s). This enables further instruction scheduling, because
it is known that they cannot read or modify arbitrary locations.

Upgrade to 1ibf2c as of 2000-12-05.

This fixes a bug where a namelist containing initialization of LOGICAL items and a
variable starting with T or F would be read incorrectly.

The TtyNam intrinsics now set Name to all spaces (at run time) if the system has no
ttyname implementation available.

Upgrade to 1ibf2c as of 1999-06-28.

This fixes a bug whereby input to a NAMELIST read involving a repeat count, such as
‘K(5)=10%3’, was not properly handled by 1ibf2c. The first item was written to ‘K(5)’,
but the remaining nine were written elsewhere (still within the array), not necessarily
starting at ‘K(6)’.

In 0.5.25, GCC 2.95 (EGCS 1.2) versus EGCS 1.1.2:

g77 no longer generates bad code for assignments, or other conversions, of REAL
or COMPLEX constant expressions to type INTEGER(KIND=2) (often referred to as
INTEGER*8).

For example, ‘INTEGER*8 J; J = 4E10’ now works as documented.

g77 no longer truncates INTEGER(KIND=2) (usually INTEGER*8) subscript
expressions when evaluating array references on systems with pointers widers than
INTEGER(KIND=1) (such as Alphas).

g77 no longer generates bad code for an assignment to a COMPLEX variable or array
that partially overlaps one or more of the sources of the same assignment (a very rare
construction). It now assigns through a temporary, in cases where such partial overlap
is deemed possible.

libg2c (1ibf2c) no longer loses track of the file being worked on during a BACKSPACE
operation.

libg2c (1ibf2c) fixes a bug whereby input to a NAMELIST read involving a repeat
count, such as ‘K(5)=10%3’, was not properly handled by 1ibf2c. The first item was
written to ‘K(5)’, but the remaining nine were written elsewhere (still within the array),
not necessarily starting at ‘K(6)’.

Automatic arrays now seem to be working on HP-UX systems.

The Date intrinsic now returns the correct result on big-endian systems.

Fix g77 so it no longer crashes when compiling I/O statements using keywords that
define INTEGER values, such as ‘I0STAT=j’, where j is other than default INTEGER (such
as INTEGER*2). Instead, it issues a diagnostic.

60

Using and Porting GNU Fortran

Fix g77 so it properly handles ‘DATA A/rpt*val/’, where rpt is not default INTEGER,
such as INTEGER*2, instead of producing a spurious diagnostic. Also fix ‘DATA
(A(I),I=1,N)’, where ‘N’ is not default INTEGER to work instead of crashing g77.

The ‘-ax’ option is now obeyed when compiling Fortran programs. (It is passed to the
‘€771 driver.)

The new ‘-~fbounds-check’ option causes g77 to compile run-time bounds checks of
array subscripts, as well as of substring start and end points.

1ibg2c now supports building as multilibbed library, which provides better support for
systems that require options such as ‘-mieee’ to work properly.

Source file names with the suffixes ‘.FOR’ and ‘.FPP’ now are recognized by g77 as if
they ended in ‘. for’ and ‘. fpp’, respectively.

The order of arguments to the subroutine forms of the CTime, DTime, ETime, and
TtyNam intrinsics has been swapped. The argument serving as the returned value for
the corresponding function forms now is the second argument, making these consistent
with the other subroutine forms of 1ibU77 intrinsics.

g77 now warns about a reference to an intrinsic that has an interface that is not
Year 2000 (Y2K) compliant. Also, 1ibg2c has been changed to increase the likelihood
of catching references to the implementations of these intrinsics using the EXTERNAL
mechanism (which would avoid the new warnings).

See Section 10.2.2 [Year 2000 (Y2K) Problems|, page 202, for more information.

g77 now warns about a reference to a function when the corresponding subsequent
function program unit disagrees with the reference concerning the type of the function.

‘~fno-emulate-complex’ is now the default option. This should result in improved
performance of code that uses the COMPLEX data type.

The ‘-malign-double’ option now reliably aligns all double-precision variables and
arrays on Intel x86 targets.

Even without the ‘-malign-double’ option, g77 reliably aligns local double-precision
variables that are not in EQUIVALENCE areas and not SAVE’d.

g77 now open-codes (“inlines”) division of COMPLEX operands instead of generating a
run-time call to the 1ibf2c routines c_div or z_div, unless the ‘-0s’ option is specified.

g77 no longer generates code to maintain errno, a C-language concept, when perform-
ing operations such as the SqRt intrinsic.

g77 developers can temporarily use the ‘-fflatten-arrays’ option to compare how the
compiler handles code generation using C-like constructs as compared to the Fortran-
like method constructs normally used.

A substantial portion of the g77 front end’s code-generation component was rewritten.
It now generates code using facilities more robustly supported by the gcc back end.
One effect of this rewrite is that some codes no longer produce a spurious “label lab
used before containing binding contour” message.

Support for the ‘~fugly’ option has been removed.

Improve documentation and indexing, including information on Year 2000 (Y2K) com-
pliance, and providing more information on internals of the front end.

Upgrade to 1ibf2c as of 1999-05-10.

Chapter 6: News About GNU Fortran 61

In 0.5.24 versus 0.5.23:

There is no g77 version 0.5.24 at this time, or planned. 0.5.24 is the version number
designated for bug fixes and, perhaps, some new features added, to 0.5.23. Version 0.5.23
requires gcc 2.8.1, as 0.5.24 was planned to require.

Due to EGCS becoming GCC (which is now an acronym for “GNU Compiler Collection”),
and EGCS 1.2 becoming officially designated GCC 2.95, there seems to be no need for an
actual 0.5.24 release.

To reduce the confusion already resulting from use of 0.5.24 to designate g77 versions
within EGCS versions 1.0 and 1.1, as well as in versions of g77 documentation and notices
during that period, “mainline” g77 version numbering resumes at 0.5.25 with GCC 2.95 (EGCS
1.2), skipping over 0.5.24 as a placeholder version number.

To repeat, there is no g77 0.5.24, but there is now a 0.5.25. Please remain calm and
return to your keypunch units.

In EGCS 1.1.2 versus EGCS 1.1.1:

e Fix the IDate intrinsic (VXT) (in 1ibg2c) so the returned year is in the documented,
non-Y 2K-compliant range of 0-99, instead of being returned as 100 in the year 2000.

See Section 10.5.2.43 [IDate Intrinsic (VXT)], page 216, for more information.

e Fix the Date_and_Time intrinsic (in 1ibg2c) to return the milliseconds value properly
in Values(8).

e Fix the LStat intrinsic (in 1ibg2c) to return device-ID information properly in SAr-
ray(7).

e Improve documentation.

In EGCS 1.1.1 versus EGCS 1.1:
e Fix libg2c so it performs an implicit ENDFILE operation (as appropriate) whenever a
REWIND is done.
(This bug was introduced in 0.5.23 and egcs 1.1 in g77’s version of 1ibf2c.)

e Fix libg2c so it no longer crashes with a spurious diagnostic upon doing any I/0
following a direct formatted write.

(This bug was introduced in 0.5.23 and egcs 1.1 in g77’s version of 1ibf2c.)

e Fix g77 so it no longer crashes compiling references to the Rand intrinsic on some
systems.

e Fix g77 portion of installation process so it works better on some systems (those with
shells requiring ‘else true’ clauses on if constructs for the completion code to be set
properly).

In EGCS 1.1 versus EGCS 1.0.3:

e Fix bugs in the 1ibU77 intrinsic HostNm that wrote one byte beyond the end of its
CHARACTER argument, and in the 1ibU77 intrinsics GMTime and LTime that overwrote
their arguments.

62

Using and Porting GNU Fortran

Assumed arrays with negative bounds (such as ‘REAL A(-1:%)’) no longer elicit spurious
diagnostics from g77, even on systems with pointers having different sizes than integers.

This bug is not known to have existed in any recent version of gcc. It was introduced
in an early release of egcs.

Valid combinations of EXTERNAL, passing that external as a dummy argument without
explicitly giving it a type, and, in a subsequent program unit, referencing that external
as an external function with a different type no longer crash g77.

CASE DEFAULT no longer crashes g77.

The ‘-Wunused’ option no longer issues a spurious warning about the “master” proce-
dure generated by g77 for procedures containing ENTRY statements.

Support ‘FORMAT (I<expr>)’ when expr is a compile-time constant INTEGER expression.

Fix g77 ‘-g’ option so procedures that use ENTRY can be stepped through, line by line,
in gdb.
Allow any REAL argument to intrinsics Second and CPU_Time.

Use tempnam, if available, to open scratch files (as in ‘OPEN(STATUS=’SCRATCH’)’) so
that the TMPDIR environment variable, if present, is used.

g77’s version of 1ibf2c separates out the setting of global state (such as command-
line arguments and signal handling) from ‘main.o’ into distinct, new library archive
members.

This should make it easier to write portable applications that have their own (non-
Fortran) main() routine properly set up the 1ibf2c environment, even when 1ibf2c
(now 1libg2c) is a shared library.

g77 no longer installs the ‘€77’ command and ‘f77.1" man page in the ‘/usr’ or
‘/usr/local’ hierarchy, even if the ‘f77-install-ok’ file exists in the source or build
directory. See the installation documentation for more information.

g77 no longer installs the ‘1ibf2c.a’ library and ‘f2c.h’ include file in the ‘/usr’ or
‘/usr/local’ hierarchy, even if the ‘f2c-install-ok’ or ‘f2c-exists-ok’ files exist in
the source or build directory. See the installation documentation for more information.

The ‘1ibf2c.a’ library produced by g77 has been renamed to ‘libg2c.a’. It is in-
stalled only in the gcc “private” directory hierarchy, ‘gcc-1ib’. This allows system
administrators and users to choose which version of the 1ibf2c library from netlib
they wish to use on a case-by-case basis. See the installation documentation for more
information.

The ‘f2c.h’ include (header) file produced by g77 has been renamed to ‘g2c.h’. Tt
is installed only in the gcc “private” directory hierarchy, ‘gcc-1ib’. This allows sys-
tem administrators and users to choose which version of the include file from netlib
they wish to use on a case-by-case basis. See the installation documentation for more
information.

The g77 command now expects the run-time library to be named libg2c.a instead of
libf2c.a, to ensure that a version other than the one built and installed as part of the
same g77 version is picked up.

During the configuration and build process, g77 creates subdirectories it needs only

as it needs them. Other cleaning up of the configuration and build process has been
performed as well.

Chapter 6: News About GNU Fortran 63

In

install-info now used to update the directory of Info documentation to contain an
entry for g77 (during installation).

Some diagnostics have been changed from warnings to errors, to prevent inadvertent
use of the resulting, probably buggy, programs. These mostly include diagnostics about
use of unsupported features in the OPEN, INQUIRE, READ, and WRITE statements, and
about truncations of various sorts of constants.

Improve compilation of FORMAT expressions so that a null byte is appended to the last
operand if it is a constant. This provides a cleaner run-time diagnostic as provided by
1libf2c for statements like ‘PRINT > (I1°, 42’.

Improve documentation and indexing.

The upgrade to 1ibf2c as of 1998-06-18 should fix a variety of problems, including
those involving some uses of the T format specifier, and perhaps some build (porting)
problems as well.

EGCS 1.1 versus g77 0.5.23:

Fix a code-generation bug that afflicted Intel x86 targets when ‘=02’ was specified
compiling, for example, an old version of the DNRM2 routine.

The x87 coprocessor stack was being mismanaged in cases involving assigned GOTO and
ASSTIGN.

g77 no longer produces incorrect code and initial values for EQUIVALENCE and COMMON
aggregates that, due to “unnatural” ordering of members vis-a-vis their types, require
initial padding.

Fix g77 crash compiling code containing the construct ‘CMPLX(0.)’ or similar.

g77 no longer crashes when compiling code containing specification statements such as
‘INTEGER (KIND=7) PTR .

g77 no longer crashes when compiling code such as ‘J = SIGNAL(1, 2)’.

)

g77 now treats ‘%4 LOC(expr)’ and ‘LOC(expr)’ as “ordinary” expressions when they are
used as arguments in procedure calls. This change applies only to global (filewide)
analysis, making it consistent with how g77 actually generates code for these cases.

Previously, g77 treated these expressions as denoting special “pointer” arguments for
the purposes of filewide analysis.

Fix g77 crash (or apparently infinite run-time) when compiling certain complicated
expressions involving COMPLEX arithmetic (especially multiplication).

Align static double-precision variables and arrays on Intel x86 targets regardless of
whether ‘-malign-double’ is specified.

Generally, this affects only local variables and arrays having the SAVE attribute or given
initial values via DATA.

The g77 driver now ensures that ‘-1g2c’ is specified in the link phase prior to any
occurrence of ‘-1m’. This prevents accidentally linking to a routine in the SunOS4
‘~1m’ library when the generated code wants to link to the one in 1ibf2c (1ibg2c).
g77 emits more debugging information when ‘-g’ is used.

This new information allows, for example, which __g77_length_a to be used in gdb to
determine the type of the phantom length argument supplied with CHARACTER variables.

64

In

Using and Porting GNU Fortran

This information pertains to internally-generated type, variable, and other information,
not to the longstanding deficiencies vis-a-vis COMMON and EQUIVALENCE.

The F90 Date_and_Time intrinsic now is supported.

The F90 System_Clock intrinsic allows the optional arguments (except for the Count
argument) to be omitted.
Upgrade to 1ibf2c as of 1998-06-18.

Improve documentation and indexing.

0.5.23 versus 0.5.22:

This release contains several regressions against version 0.5.22 of g77, due to using the
“vanilla” gcc back end instead of patching it to fix a few bugs and improve performance
in a few cases.

Features that have been dropped from this version of g77 due to their being imple-
mented via g77-specific patches to the gcc back end in previous releases include:

__ keyword, the options ‘-fargument-alias’,
‘~fargument-noalias’, and ‘-fargument-noalias-global’, and the
corresponding alias-analysis code.

— Support for restrict_

(egcs has the alias-analysis code, but not the __restrict__ keyword. egcs g77
users benefit from the alias-analysis code despite the lack of the __restrict__
keyword, which is a C-language construct.)

— Support for the GNU compiler options ‘-fmove-all-movables’,
‘~freduce-all-givs’, and ‘~frerun-loop-opt’.
(egcs supports these options. g77 users of egcs benefit from them even if they
are not explicitly specified, because the defaults are optimized for g77 users.)

— Support for the ‘-W’ option warning about integer division by zero.

4

— The Intel x86-specific option ‘-malign-double’ applying to stack-allocated data
as well as statically-allocate data.

Note that the ‘gcc/f/gbe/’ subdirectory has been removed from this distribution as a
result of g77 no longer including patches for the gcc back end.

Fix bugs in the 1ibU77 intrinsic HostNm that wrote one byte beyond the end of its
CHARACTER argument, and in the 1ibU77 intrinsics GMTime and LTime that overwrote
their arguments.

Support gcc version 2.8, and remove support for prior versions of gcc.

[

Remove support for the ‘~-driver’ option, as g77 now does all the driving, just like

gcc.
CASE DEFAULT no longer crashes g77.

Valid combinations of EXTERNAL, passing that external as a dummy argument without
explicitly giving it a type, and, in a subsequent program unit, referencing that external
as an external function with a different type no longer crash g77.

g77 no longer installs the ‘€77’ command and ‘f77.1" man page in the ‘/usr’ or
‘/usr/local’ hierarchy, even if the ‘£77-install-ok’ file exists in the source or build
directory. See the installation documentation for more information.

Chapter 6: News About GNU Fortran 65

In

g77 no longer installs the ‘1ibf2c.a’ library and ‘f2c.h’ include file in the ‘/usr’ or
‘/usr/local’ hierarchy, even if the ‘f2c-install-ok’ or ‘f2c-exists-ok’ files exist in
the source or build directory. See the installation documentation for more information.

The ‘1ibf2c.a’ library produced by g77 has been renamed to ‘libg2c.a’. It is in-
stalled only in the gcc “private” directory hierarchy, ‘gcc-1ib’. This allows system
administrators and users to choose which version of the 1ibf2c library from netlib
they wish to use on a case-by-case basis. See the installation documentation for more
information.

The ‘f2c.h’ include (header) file produced by g77 has been renamed to ‘g2c.h’. It
is installed only in the gcc “private” directory hierarchy, ‘gcc-1ib’. This allows sys-
tem administrators and users to choose which version of the include file from netlib
they wish to use on a case-by-case basis. See the installation documentation for more
information.

The g77 command now expects the run-time library to be named libg2c.a instead of
libf2c.a, to ensure that a version other than the one built and installed as part of the
same g77 version is picked up.

The ‘-Wunused’ option no longer issues a spurious warning about the “master” proce-
dure generated by g77 for procedures containing ENTRY statements.

g77’s version of 1ibf2c separates out the setting of global state (such as command-
line arguments and signal handling) from ‘main.o’ into distinct, new library archive
members.

This should make it easier to write portable applications that have their own (non-
Fortran) main() routine properly set up the 1ibf2c environment, even when 1ibf2c
(now 1libg2c) is a shared library.

During the configuration and build process, g77 creates subdirectories it needs only as
it needs them, thus avoiding unnecessary creation of, for example, ‘stagel/f/runtime’
when doing a non-bootstrap build. Other cleaning up of the configuration and build
process has been performed as well.

install-info now used to update the directory of Info documentation to contain an
entry for g77 (during installation).

Some diagnostics have been changed from warnings to errors, to prevent inadvertent
use of the resulting, probably buggy, programs. These mostly include diagnostics about
use of unsupported features in the OPEN, INQUIRE, READ, and WRITE statements, and
about truncations of various sorts of constants.

Improve documentation and indexing.
Upgrade to 1ibf2c as of 1998-04-20.

This should fix a variety of problems, including those involving some uses of the T
format specifier, and perhaps some build (porting) problems as well.

0.5.22 versus 0.5.21:

Fix code generation for iterative DO loops that have one or more references to the
iteration variable, or to aliases of it, in their control expressions. For example, ‘DO 10
J=2,J now is compiled correctly.

66

Using and Porting GNU Fortran

Fix a code-generation bug that afflicted Intel x86 targets when ‘=02’ was specified
compiling, for example, an old version of the DNRM2 routine.

The x87 coprocessor stack was being mismanaged in cases involving assigned GOTO and
ASSIGN.

Fix DTime intrinsic so as not to truncate results to integer values (on some systems).

Fix Signal intrinsic so it offers portable support for 64-bit systems (such as Digital
Alphas running GNU/Linux).

Fix run-time crash involving NAMELIST on 64-bit machines such as Alphas.

Fix g77 version of 1ibf2c so it no longer produces a spurious ‘I/0 recursion’ diagnos-
tic at run time when an I/O operation (such as ‘READ *,I’) is interrupted in a manner
that causes the program to be terminated via the f_exit routine (such as via C-c).

Fix g77 crash triggered by CASE statement with an omitted lower or upper bound.
Fix g77 crash compiling references to CPU_Time intrinsic.

Fix g77 crash (or apparently infinite run-time) when compiling certain complicated
expressions involving COMPLEX arithmetic (especially multiplication).

Fix g77 crash on statements such as ‘PRINT *, (REAL(Z(I)),I=1,2)’, where ‘Z’ is
DOUBLE COMPLEX.

Fix a g++ crash.

Support ‘FORMAT (I<expr>)’ when expr is a compile-time constant INTEGER expression.
Fix g77 ‘-g’ option so procedures that use ENTRY can be stepped through, line by line,
in gdb.

Fix a profiling-related bug in gcc back end for Intel x86 architecture.

Allow any REAL argument to intrinsics Second and CPU_Time.

Allow any numeric argument to intrinsics Int2 and Int8.

Use tempnam, if available, to open scratch files (as in ‘OPEN(STATUS=’SCRATCH’)’) so
that the TMPDIR environment variable, if present, is used.

Rename the gcc keyword restrict to __restrict__, to avoid rejecting valid, existing,
C programs. Support for restrict is now more like support for complex.

Fix ‘~fpedantic’ to not reject procedure invocations such as ‘I=J ()’ and ‘CALL FOOQ)’.
Fix ‘~fugly-comma’ to affect invocations of only external procedures. Restore rejection
of gratuitous trailing omitted arguments to intrinsics, as in ‘I=MAX(3,4,,)" .

Fix compiler so it accepts ‘-fgnu-intrinsics-*" and ‘-fbadu77-intrinsics-*’ op-
tions.

Improve diagnostic messages from 1ibf2c so it is more likely that the printing of the
active format string is limited to the string, with no trailing garbage being printed.

(Unlike £2¢, g77 did not append a null byte to its compiled form of every format string
specified via a FORMAT statement. However, £2¢ would exhibit the problem anyway
for a statement like ‘PRINT ’ (I)garbage’, 1’ by printing ‘(I)garbage’ as the format
string.)

Improve compilation of FORMAT expressions so that a null byte is appended to the last
operand if it is a constant. This provides a cleaner run-time diagnostic as provided by
1libf2c for statements like ‘PRINT ° (I1°, 42’.

Chapter 6: News About GNU Fortran 67

In

In

Fix various crashes involving code with diagnosed errors.
Fix cross-compilation bug when configuring 1ibf2c.
Improve diagnostics.

Improve documentation and indexing.

Upgrade to 1ibf2c as of 1997-09-23. This fixes a formatted-I/O bug that afflicted
64-bit systems with 32-bit integers (such as Digital Alpha running GNU /Linux).

EGCS 1.0.2 versus EGCS 1.0.1:

Fix g77 crash triggered by CASE statement with an omitted lower or upper bound.

Fix g77 crash on statements such as ‘PRINT *, (REAL(Z(I)),I=1,2)’, where ‘Z’ is
DOUBLE COMPLEX.

Fix ‘-fPIC’ (such as compiling for ELF targets) on the Intel x86 architecture target so
invalid assembler code is no longer produced.

Fix ‘-fpedantic’ to not reject procedure invocations such as ‘I=J()’ and ‘CALL FOO()’.

Fix ‘-fugly-comma’ to affect invocations of only external procedures. Restore rejection
of gratuitous trailing omitted arguments to intrinsics, as in ‘I=MAX(3,4,,)" .

Fix compiler so it accepts ‘-fgnu-intrinsics-*" and ‘-fbadu77-intrinsics-*’ op-
tions.

EGCS 1.0.1 versus EGCS 1.0:

Fix run-time crash involving NAMELIST on 64-bit machines such as Alphas.

EGCS 1.0 versus g77 0.5.21:

Version 1.0 of egcs contains several regressions against version 0.5.21 of g77, due to
using the “vanilla” gcc back end instead of patching it to fix a few bugs and improve
performance in a few cases.

Features that have been dropped from this version of g77 due to their being imple-
mented via g77-specific patches to the gcc back end in previous releases include:
— Support for the C-language restrict keyword.

— Support for the ‘-W’ option warning about integer division by zero.

3

— The Intel x86-specific option ‘-malign-double’ applying to stack-allocated data
as well as statically-allocate data.

Note that the ‘gcc/f/gbe/’ subdirectory has been removed from this distribution as a
result of g77 being fully integrated with the egcs variant of the gcc back end.

Fix code generation for iterative DO loops that have one or more references to the
iteration variable, or to aliases of it, in their control expressions. For example, ‘D0 10
J=2,J" now is compiled correctly.

Fix DTime intrinsic so as not to truncate results to integer values (on some systems).

Some Fortran code, miscompiled by g77 built on gcc version 2.8.1 on m68k-next-
nextstep3 configurations when using the ‘-02’ option, is now compiled correctly. It is

68

In

Using and Porting GNU Fortran

believed that a C function known to miscompile on that configuration when using the
‘-02 -funroll-loops’ options also is now compiled correctly.

Remove support for non-egcs versions of gcc.

Remove support for the ‘--driver’ option, as g77 now does all the driving, just like
gcc.

Allow any numeric argument to intrinsics Int2 and Int8.

Improve diagnostic messages from 1ibf2c so it is more likely that the printing of the
active format string is limited to the string, with no trailing garbage being printed.

(Unlike £2¢, g77 did not append a null byte to its compiled form of every format string
specified via a FORMAT statement. However, £2c would exhibit the problem anyway
for a statement like ‘PRINT ’ (I)garbage’, 1’ by printing ‘(I)garbage’ as the format
string.)

Upgrade to 1ibf2c as of 1997-09-23. This fixes a formatted-I/O bug that afflicted
64-bit systems with 32-bit integers (such as Digital Alpha running GNU /Linux).

0.5.21:

Fix a code-generation bug introduced by 0.5.20 caused by loop unrolling (by specifying
‘~funroll-loops’ or similar). This bug afflicted all code compiled by version 2.7.2.2.f.2
of gcc (C, C++, Fortran, and so on).

Fix a code-generation bug manifested when combining local EQUIVALENCE with a DATA
statement that follows the first executable statement (or is treated as an executable-
context statement as a result of using the ‘~fpedantic’ option).

Fix a compiler crash that occurred when an integer division by a constant zero is
detected. Instead, when the ‘-W’ option is specified, the gcc back end issues a warning
about such a case. This bug afflicted all code compiled by version 2.7.2.2.f.2 of gcc (C,
C++, Fortran, and so on).

Fix a compiler crash that occurred in some cases of procedure inlining. (Such cases
became more frequent in 0.5.20.)

Fix a compiler crash resulting from using DATA or similar to initialize a COMPLEX variable
or array to zero.

Fix compiler crashes involving use of AND, OR, or XOR intrinsics.

Fix compiler bug triggered when using a COMMON or EQUIVALENCE variable as the target
of an ASSIGN or assigned-GOTO statement.

Fix compiler crashes due to using the name of a some non-standard intrinsics (such as
FTell or FPutC) as such and as the name of a procedure or common block. Such dual
use of a name in a program is allowed by the standard.

Place automatic arrays on the stack, even if SAVE or the ‘~fno-automatic’ option is
in effect. This avoids a compiler crash in some cases.

The ‘-malign-double’ option now reliably aligns DOUBLE PRECISION optimally on Pen-
tium and Pentium Pro architectures (586 and 686 in gcc).

New option ‘-Wno-globals’ disables warnings about “suspicious” use of a name both
as a global name and as the implicit name of an intrinsic, and warnings about dis-

Chapter 6: News About GNU Fortran 69

agreements over the number or natures of arguments passed to global procedures, or
the natures of the procedures themselves.

The default is to issue such warnings, which are new as of this version of g77.

e New option ‘-fno-globals’ disables diagnostics about potentially fatal disagreements
analysis problems, such as disagreements over the number or natures of arguments
passed to global procedures, or the natures of those procedures themselves.

The default is to issue such diagnostics and flag the compilation as unsuccessful. With
this option, the diagnostics are issued as warnings, or, if ‘~Wno-globals’ is specified,
are not issued at all.

This option also disables inlining of global procedures, to avoid compiler crashes re-
sulting from coding errors that these diagnostics normally would identify.

e Diagnose cases where a reference to a procedure disagrees with the type of that pro-
cedure, or where disagreements about the number or nature of arguments exist. This
avoids a compiler crash.

e Fix parsing bug whereby g77 rejected a second initialization specification immediately
following the first’s closing ‘/’ without an intervening comma in a DATA statement, and
the second specification was an implied-DO list.

e Improve performance of the gcc back end so certain complicated expressions involving
COMPLEX arithmetic (especially multiplication) don’t appear to take forever to compile.

e Fix a couple of profiling-related bugs in gcc back end.

e Integrate GNU Ada’s (GNAT’s) changes to the back end, which consist almost entirely
of bug fixes. These fixes are circa version 3.10p of GNAT.

e Include some other gcc fixes that seem wuseful in g77’s version of gcc.
(See ‘gcc/Changelog’ for details—compare it to that file in the vanilla
gcc-2.7.2.3.tar.gz distribution.)

e Fix 1ibU77 routines that accept file and other names to strip trailing blanks from them,
for consistency with other implementations. Blanks may be forcibly appended to such
names by appending a single null character (‘CHAR(0)’) to the significant trailing blanks.

e Fix CHMOD intrinsic to work with file names that have embedded blanks, commas, and
SO on.

e Fix SIGNAL intrinsic so it accepts an optional third Status argument.

e Fix IDATE() intrinsic subroutine (VXT form) so it accepts arguments in the correct
order. Documentation fixed accordingly, and for GMTIME() and LTIME() as well.

e Make many changes to 1ibU77 intrinsics to support existing code more directly.

Such changes include allowing both subroutine and function forms of many routines,
changing MCLOCK() and TIME() to return INTEGER(KIND=1) wvalues, introducing
MCLOCK8() and TIME8() to return INTEGER(KIND=2) values, and placing functions
that are intended to perform side effects in a new intrinsic group, badu77.

e Improve 1ibU77 so it is more portable.

e Add options ‘-fbadu77-intrinsics-delete’, ‘~fbadu77-intrinsics-hide’, and so
on.

e Fix crashes involving diagnosed or invalid code.

70

Using and Porting GNU Fortran

g77 and gcc now do a somewhat better job detecting and diagnosing arrays that are
too large to handle before these cause diagnostics during the assembler or linker phase,
a compiler crash, or generation of incorrect code.

Make some fixes to alias analysis code.
Add support for restrict keyword in gcc front end.

Support gcc version 2.7.2.3 (modified by g77 into version 2.7.2.3.f.1), and remove
support for prior versions of gcc.

Incorporate GNAT’s patches to the gcc back end into g77’s, so GNAT users do not
need to apply GNAT’s patches to build both GNAT and g77 from the same source
tree.

Modify make rules and related code so that generation of Info documentation doesn’t
require compilation using gcc. Now, any ANSI C compiler should be adequate to
produce the g77 documentation (in particular, the tables of intrinsics) from scratch.

Add INT2 and INTS8 intrinsics.

Add CPU_TIME intrinsic.

Add ALARM intrinsic.

CTIME intrinsic now accepts any INTEGER argument, not just INTEGER (KIND=2).
Warn when explicit type declaration disagrees with the type of an intrinsic invocation.
Support ‘*£771’ entry in gcc ‘specs’ file.

Fix typo in make rule g77-cross, used only for cross-compiling.

Fix 1ibf2c build procedure to re-archive library if previous attempt to archive was
interrupted.

Change gcc to unroll loops only during the last invocation (of as many as two invoca-
tions) of loop optimization.

Improve handling of ‘-fno-f2c¢’ so that code that attempts to pass an intrinsic as an
actual argument, such as ‘CALL FOO(ABS)’, is rejected due to the fact that the run-
time-library routine is, effectively, compiled with ‘~ff2c’ in effect.

Fix g77 driver to recognize ‘~fsyntax-only’ as an option that inhibits linking, just
like ‘-¢’” or ‘-8’, and to recognize and properly handle the ‘-nostdlib’, ‘-M’, ‘-MM’,
‘-nodefaultlibs’, and ‘-Xlinker’ options.

Upgrade to 1ibf2c as of 1997-08-16.
Modify 1ibf2c to consistently and clearly diagnose recursive I/O (at run time).

g77 driver now prints version information (such as produced by g77 -v) to stderr
instead of stdout.

The ‘.r’ suffix now designates a Ratfor source file, to be preprocessed via the ratfor
command, available separately.

Fix some aspects of how gcc determines what kind of system is being configured and
what kinds are supported. For example, GNU Linux/Alpha ELF systems now are
directly supported.

Improve diagnostics.

Improve documentation and indexing.

Chapter 6: News About GNU Fortran 71

In

Include all pertinent files for 1ibf2c that come from netlib.bell-labs.com; give any
such files that aren’t quite accurate in g77’s version of 1ibf2c the suffix ‘.netlib’.

Reserve INTEGER (KIND=0) for future use.

0.5.20:

The ‘~fno-typeless-boz’ option is now the default.

This option specifies that non-decimal-radix constants using the prefixed-radix form
(such as ‘Z?1234°’) are to be interpreted as INTEGER(KIND=1) constants. Specify
‘~-ftypeless-boz’ to cause such constants to be interpreted as typeless.

(Version 0.5.19 introduced ‘-fno-typeless-boz’ and its inverse.)

See Section 5.4 [Options Controlling Fortran Dialect], page 38, for information on the
‘~ftypeless-boz’ option.

Options ‘-ff90-intrinsics-enable’ and ‘-fvxt-intrinsics-enable’ now are the
defaults.

Some programs might use names that clash with intrinsic names defined (and now
enabled) by these options or by the new 1ibU77 intrinsics. Users of such programs might
need to compile them differently (using, for example, ‘~ff90-intrinsics-disable’)
or, better yet, insert appropriate EXTERNAL statements specifying that these names are
not intended to be names of intrinsics.

The ALWAYS_FLUSH macro is no longer defined when building 1ibf2c, which should
result in improved I/O performance, especially over NFS.

Note: If you have code that depends on the behavior of 1ibf2c¢c when built with
ALWAYS_FLUSH defined, you will have to modify 1ibf2c accordingly before building it
from this and future versions of g77.

See Section 14.4.8 [Output Assumed To Flush], page 261, for more information.

Dave Love’s implementation of 1ibU77 has been added to the version of 1ibf2c dis-
tributed with and built as part of g77. g77 now knows about the routines in this library
as intrinsics.

New option ‘-fvxt’ specifies that the source file is written in VXT Fortran, instead of
GNU Fortran.

See Section 9.6 [VXT Fortran|, page 193, for more information on the constructs rec-
ognized when the ‘-fvxt’ option is specified.

The ‘~fvxt-not-£90’ option has been deleted, along with its inverse, ‘-f£90-not-vxt’.

If you used one of these deleted options, you should re-read the pertinent documentation
to determine which options, if any, are appropriate for compiling your code with this
version of g77.

See Chapter 9 [Other Dialects], page 187, for more information.

The ‘-fugly’ option now issues a warning, as it likely will be removed in a future
version.

(Enabling all the ‘-fugly-*’ options is unlikely to be feasible, or sensible, in the future,

so users should learn to specify only those ‘~fugly-*’ options they really need for a
particular source file.)

72

Using and Porting GNU Fortran

e The ‘~fugly-assumed’ option, introduced in version 0.5.19, has been changed to better

accommodate old and new code.
See Section 9.9.2 [Ugly Assumed-Size Arrays|, page 196, for more information.

Make a number of fixes to the g77 front end and the gcc back end to better support
Alpha (AXP) machines. This includes providing at least one bug-fix to the gcc back
end for Alphas.

Related to supporting Alpha (AXP) machines, the LOC() intrinsic and %LOC() con-
struct now return values of INTEGER(KIND=0) type, as defined by the GNU Fortran
language.

This type is wide enough (holds the same number of bits) as the character-pointer type
on the machine.

On most machines, this won’t make a difference, whereas, on Alphas and other systems
with 64-bit pointers, the INTEGER(KIND=0) type is equivalent to INTEGER(KIND=2)
(often referred to as INTEGER*8) instead of the more common INTEGER (KIND=1) (often
referred to as INTEGER*4).

Emulate COMPLEX arithmetic in the g77 front end, to avoid bugs in complex support
in the gcc back end. New option ‘-fno-emulate-complex’ causes g77 to revert the
0.5.19 behavior.

Fix bug whereby ‘REAL A(1)’, for example, caused a compiler crash if ‘~fugly-assumed’
was in effect and A was a local (automatic) array. That case is no longer affected by
the new handling of ‘-fugly-assumed’.

Fix g77 command driver so that ‘g77 —o foo.f’ no longer deletes ‘foo.f’ before issuing
other diagnostics, and so the ‘-x’ option is properly handled.

Enable inlining of subroutines and functions by the gcc back end. This works as it
does for gcc itself—program units may be inlined for invocations that follow them in
the same program unit, as long as the appropriate compile-time options are specified.
Dummy arguments are no longer assumed to potentially alias (overlap) other dummy
arguments or COMMON areas when any of these are defined (assigned to) by Fortran code.
This can result in faster and/or smaller programs when compiling with optimization
enabled, though on some systems this effect is observed only when ‘~fforce-addr’ also
is specified.

New options ‘-falias-check’, ‘-fargument-alias’, ‘-fargument-noalias’, and
‘~fno-argument-noalias-global’ control the way g77 handles potential aliasing.
See Section 14.4.7 [Aliasing Assumed To Work], page 259, for detailed information on
why the new defaults might result in some programs no longer working the way they
did when compiled by previous versions of g77.

The CONJG() and DCONJG() intrinsics now are compiled in-line.

The bug-fix for 0.5.19.1 has been re-done. The g77 compiler has been changed back to
assume 1ibf2c¢ has no aliasing problems in its implementations of the COMPLEX (and
DOUBLE COMPLEX) intrinsics. The 1ibf2c has been changed to have no such problems.
As a result, 0.5.20 is expected to offer improved performance over 0.5.19.1, perhaps as
good as 0.5.19 in most or all cases, due to this change alone.

Note: This change requires version 0.5.20 of 1ibf2c, at least, when linking code pro-
duced by any versions of g77 other than 0.5.19.1. Use ‘g77 -v’ to determine the version

Chapter 6: News About GNU Fortran 73

numbers of the 11bF77, 1ibI77, and 1ibU77 components of the 1ibf2c library. (If these
version numbers are not printed—in particular, if the linker complains about unresolved
references to names like ‘g77__fvers__"—that strongly suggests your installation has
an obsolete version of 1ibf2c.)

e New option ‘~fugly-assign’ specifies that the same memory locations are to be used to
hold the values assigned by both statements ‘I = 3’ and ‘ASSIGN 10 TO I’, for example.
(Normally, g77 uses a separate memory location to hold assigned statement labels.)
See Section 9.9.7 [Ugly Assigned Labels|, page 199, for more information.

e FORMAT and ENTRY statements now are allowed to precede IMPLICIT NONE statements.

e Produce diagnostic for unsupported SELECT CASE on CHARACTER type, instead of crash-
ing, at compile time.

e Fix crashes involving diagnosed or invalid code.

e Change approach to building 1ibf2c archive (‘1ibf2c.a’) so that members are added
to it only when truly necessary, so the user that installs an already-built g77 doesn’t
need to have write access to the build tree (whereas the user doing the build might not
have access to install new software on the system).

e Support gcc version 2.7.2.2 (modified by g77 into version 2.7.2.2.f2), and remove
support for prior versions of gcc.

e Upgrade to 1ibf2c as of 1997-02-08, and fix up some of the build procedures.

e Improve general build procedures for g77, fixing minor bugs (such as deletion of any
file named ‘€771’ in the parent directory of gcc/).

e Enable full support of INTEGER(KIND=2) (often referred to as INTEGER*8) available in
1ibf2c and ‘f2c.h’ so that £2c users may make full use of its features via the g77
version of ‘f2c.h’ and the INTEGER(KIND=2) support routines in the g77 version of
libf2c.

e Improve g77 driver and 1ibf2c so that ‘g77 -v’ yields version information on the
library.

e The SNGL and FLOAT intrinsics now are specific intrinsics, instead of synonyms for the
generic intrinsic REAL.

e New intrinsics have been added. These are REALPART, IMAGPART, COMPLEX, LONG, and
SHORT.

e A new group of intrinsics, gnu, has been added to contain the new REALPART, IMAGPART,
and COMPLEX intrinsics. An old group, dcp, has been removed.

e Complain about industry-wide ambiguous references ‘REAL (expr)’ and ‘AIMAG (expr)’,
where expr is DOUBLE COMPLEX (or any complex type other than COMPLEX), unless
‘~-ff90’ option specifies Fortran 90 interpretation or new ‘-fugly-complex’ option,
in conjunction with ‘-fnot-£90’, specifies £2¢ interpretation.

e Make improvements to diagnostics.

e Speed up compiler a bit.

e Improvements to documentation and indexing, including a new chapter containing
information on one, later more, diagnostics that users are directed to pull up automat-
ically via a message in the diagnostic itself.

(Hence the menu item M for the node Diagnostics in the top-level menu of the Info
documentation.)

74 Using and Porting GNU Fortran

In previous versions:

Information on previous versions is archived in ‘gcc/gcc/f/news.texi’ following the
test of the DOC-OLDNEWS macro.

Chapter 7: User-visible Changes 75

7 User-visible Changes

This chapter describes changes to g77 that are visible to the programmers who actually
write and maintain Fortran code they compile with g77. Information on changes to instal-
lation procedures, changes to the documentation, and bug fixes is not provided here, unless
it is likely to affect how users use g77. See Chapter 6 [News About GNU Fortran|, page 57,
for information on such changes to g77.

Note that two variants of g77 are tracked below. The egcs variant is described vis-a-vis
previous versions of egcs and/or an official FSF version, as appropriate. Note that all such
variants are obsolete as of July 1999 - the information is retained here only for its historical
value.

Therefore, egcs versions sometimes have multiple listings to help clarify how they differ
from other versions, though this can make getting a complete picture of what a particular
egcs version contains somewhat more difficult.

For information on bugs in the GCC-3.1 version of g77, see Section 15.2 [Known Bugs
In GNU Fortran], page 275.

The following information was last updated on 2002-04-13:

In GCC 3.1 (formerly known as g77-0.5.27) versus GCC 3.0:

e Problem Reports fixed (in chronological order of submission):

947 Data statement initialization with subscript of kind INTEGER*2

3743 Reference to intrinsic ‘ISHFT’ invalid

3807 Function BESJN(integer,double) problems

3957 g77 -pipe -xf77-cpp-input sends output to stdout

4279 g77 -h" gives bogus output

4730 ICE on valid input using CALL EXIT(%VAL(...))

4752 g77 -v -¢ -xfT7-version /dev/null -xnone causes ice

4885 BACKSPACE example that doesn’t work as of gec/g77-3.0.x

5122 g77 rejects accepted use of INTEGER*2 as type of DATA statement loop
index

5397 ICE on compiling source with 540 000 000 REAL array

5473 ICE on BESJN(integer*8,real)

5837 bug in loop unrolling

e g77 now has its man page generated from the texinfo documentation, to guarantee that
it remains up to date.
e g77 used to reject the following program on 32-bit targets:

PROGRAM PROG
DIMENSION A(140 000 000)
END

with the message:

76

Using and Porting GNU Fortran

prog.f: In program ‘prog’:
prog.f:2:
DIMENSION A(140 000 000)

Array ‘a’ at () is too large to handle

because 140 000 000 reals is larger than the largest bit-extent that can be expressed in
32 bits. However, bit-sizes never play a role after offsets have been converted to byte
addresses. Therefore this check has been removed. Note: On GNU/Linux systems one
has to compile programs that occupy more than 1 Gbyte statically, i.e. g77 -static

Based on work done by Juergen Pfeifer (juergen.pfeifer@gmx.net) libf2c is now a
shared library. Omne can still link in all objects with the program by specifying the
‘-static’ option.

Robert Anderson (rwa@alumni.princeton.edu) thought up a two line change that
enables g77 to compile such code as:

SUBROUTINE SUB(A, N)
DIMENSION N(2)
DIMENSION A(N(1),N(2))
AC1,1) = 1.

END

Note the use of array elements in the bounds of the adjustable array A.

George Helffrich (george@geo.titech.ac.jp) implemented a change in substring in-
dex checking (when specifying ‘~fbounds-check’) that permits the use of zero length
substrings of the form string(1:0).

Based on code developed by Pedro Vazquez (vazquez@penelope.iqm.unicamp.br),
the 1ibf2c library is now able to read and write files larger than 2 Gbyte on 32-bit
target machines, if the operating system supports this.

In 0.5.26, GCC 3.0 versus GCC 2.95:

When a REWIND was issued after a WRITE statement on an unformatted file, the
implicit truncation was performed by copying the truncated file to /tmp and copying
the result back. This has been fixed by using the ftruncate OS function. Thanks go
to the GAMESS developers for bringing this to our attention.

Using options ‘-g’, ‘~ggdb’ or ‘-gdwarf [-2]" (where appropriate for your target) now
also enables debugging information for COMMON BLOCK and EQUIVALENCE items
to be emitted. Thanks go to Andrew Vaught (andy@xena.eas.asu.edu) and George
Helffrich (george@geology.bristol.ac.uk) for fixing this longstanding problem.

It is not necessary anymore to use the option ‘-femulate-complex’ to compile Fortran
code using COMPLEX arithmetic, even on 64-bit machines (like the Alpha). This will
improve code generation.

INTRINSIC arithmetic functions are now treated as routines that do not depend on
anything but their argument(s). This enables further instruction scheduling, because
it is known that they cannot read or modify arbitrary locations.

Chapter 7: User-visible Changes 7

In 0.5.25, GCC 2.95 (EGCS 1.2) versus EGCS 1.1.2:

e The new ‘-fbounds-check’ option causes g77 to compile run-time bounds checks of
array subscripts, as well as of substring start and end points.

e 1ibg2c now supports building as multilibbed library, which provides better support for
systems that require options such as ‘-mieee’ to work properly.

e Source file names with the suffixes ‘.FOR’ and ‘.FPP’ now are recognized by g77 as if
they ended in ‘.for’ and ‘.fpp’, respectively.

e The order of arguments to the subroutine forms of the CTime, DTime, ETime, and
TtyNam intrinsics has been swapped. The argument serving as the returned value for
the corresponding function forms now is the second argument, making these consistent
with the other subroutine forms of 1ibU77 intrinsics.

e g77 now warns about a reference to an intrinsic that has an interface that is not
Year 2000 (Y2K) compliant. Also, 1ibg2c has been changed to increase the likelihood
of catching references to the implementations of these intrinsics using the EXTERNAL
mechanism (which would avoid the new warnings).

See Section 10.2.2 [Year 2000 (Y2K) Problems|, page 202, for more information.

e ‘~fno-emulate-complex’ is now the default option. This should result in improved
performance of code that uses the COMPLEX data type.

e The ‘-malign-double’ option now reliably aligns all double-precision variables and
arrays on Intel x86 targets.

e g77 no longer generates code to maintain errno, a C-language concept, when perform-
ing operations such as the SqRt intrinsic.

e Support for the ‘~fugly’ option has been removed.

In 0.5.24 versus 0.5.23:

There is no g77 version 0.5.24 at this time, or planned. 0.5.24 is the version number
designated for bug fixes and, perhaps, some new features added, to 0.5.23. Version 0.5.23
requires gcc 2.8.1, as 0.5.24 was planned to require.

Due to EGCS becoming GCC (which is now an acronym for “GNU Compiler Collection”),
and EGCS 1.2 becoming officially designated GCC 2.95, there seems to be no need for an
actual 0.5.24 release.

To reduce the confusion already resulting from use of 0.5.24 to designate g77 versions
within EGCS versions 1.0 and 1.1, as well as in versions of g77 documentation and notices
during that period, “mainline” g77 version numbering resumes at 0.5.25 with GCC 2.95 (EGCS
1.2), skipping over 0.5.24 as a placeholder version number.

To repeat, there is no g77 0.5.24, but there is now a 0.5.25. Please remain calm and
return to your keypunch units.

In EGCS 1.1.2 versus EGCS 1.1.1:

In EGCS 1.1.1 versus EGCS 1.1:

78

Using and Porting GNU Fortran

In EGCS 1.1 versus EGCS 1.0.3:

Support ‘FORMAT (I<expr>)’ when expr is a compile-time constant INTEGER expression.
Fix g77 ‘-g’ option so procedures that use ENTRY can be stepped through, line by line,
in gdb.

Allow any REAL argument to intrinsics Second and CPU_Time.

Use tempnam, if available, to open scratch files (as in ‘OPEN(STATUS=’SCRATCH’)’) so
that the TMPDIR environment variable, if present, is used.

g77’s version of 1ibf2c separates out the setting of global state (such as command-
line arguments and signal handling) from ‘main.o’ into distinct, new library archive
members.

This should make it easier to write portable applications that have their own (non-
Fortran) main() routine properly set up the 1ibf2c environment, even when 1ibf2c
(now 1libg2c) is a shared library.

The g77 command now expects the run-time library to be named 1ibg2c.a instead of
libf2c.a, to ensure that a version other than the one built and installed as part of the
same g77 version is picked up.

Some diagnostics have been changed from warnings to errors, to prevent inadvertent
use of the resulting, probably buggy, programs. These mostly include diagnostics about
use of unsupported features in the OPEN, INQUIRE, READ, and WRITE statements, and
about truncations of various sorts of constants.

In EGCS 1.1 versus g77 0.5.23:

g77 now treats ‘4LOC(expr)’ and ‘LOC(expr)’ as “ordinary” expressions when they are
used as arguments in procedure calls. This change applies only to global (filewide)
analysis, making it consistent with how g77 actually generates code for these cases.
Previously, g77 treated these expressions as denoting special “pointer” arguments for
the purposes of filewide analysis.

Align static double-precision variables and arrays on Intel x86 targets regardless of
whether ‘-malign-double’ is specified.

Generally, this affects only local variables and arrays having the SAVE attribute or given
initial values via DATA.

The g77 driver now ensures that ‘-1g2c’ is specified in the link phase prior to any
occurrence of ‘-1m’. This prevents accidentally linking to a routine in the SunOS4
‘~1m’ library when the generated code wants to link to the one in 1ibf2c (1ibg2c).
g77 emits more debugging information when ‘-g’ is used.

This new information allows, for example, which __g77_length_a to be used in gdb to
determine the type of the phantom length argument supplied with CHARACTER variables.
This information pertains to internally-generated type, variable, and other information,
not to the longstanding deficiencies vis-a-vis COMMON and EQUIVALENCE.

The F90 Date_and_Time intrinsic now is supported.

The F90 System_Clock intrinsic allows the optional arguments (except for the Count
argument) to be omitted.

Chapter 7: User-visible Changes 79

In 0.5.23 versus 0.5.22:

This release contains several regressions against version 0.5.22 of g77, due to using the
“vanilla” gcc back end instead of patching it to fix a few bugs and improve performance
in a few cases.

Features that have been dropped from this version of g77 due to their being imple-
mented via g77-specific patches to the gcc back end in previous releases include:

— Support for __restrict__ keyword, the options ‘-fargument-alias’,
‘~fargument-noalias’, and ‘-fargument-noalias-global’, and the
corresponding alias-analysis code.

(egcs has the alias-analysis code, but not the __restrict__ keyword. egcs g77
users benefit from the alias-analysis code despite the lack of the __restrict__
keyword, which is a C-language construct.)

— Support for the GNU compiler options ‘-fmove-all-movables’,
‘~freduce-all-givs’, and ‘~frerun-loop-opt’.
(egcs supports these options. g77 users of egcs benefit from them even if they
are not explicitly specified, because the defaults are optimized for g77 users.)

— Support for the ‘-W’ option warning about integer division by zero.

4

— The Intel x86-specific option ‘-malign-double’ applying to stack-allocated data
as well as statically-allocate data.

Support gcc version 2.8, and remove support for prior versions of gec.

Remove support for the ‘--driver’ option, as g77 now does all the driving, just like
gec.

The g77 command now expects the run-time library to be named 1ibg2c.a instead of
libf2c.a, to ensure that a version other than the one built and installed as part of the
same g77 version is picked up.

g77’s version of 1ibf2c separates out the setting of global state (such as command-
line arguments and signal handling) from ‘main.o’ into distinct, new library archive
members.

This should make it easier to write portable applications that have their own (non-
Fortran) main() routine properly set up the 1ibf2c environment, even when 1ibf2c
(now 1libg2c) is a shared library.

Some diagnostics have been changed from warnings to errors, to prevent inadvertent
use of the resulting, probably buggy, programs. These mostly include diagnostics about
use of unsupported features in the OPEN, INQUIRE, READ, and WRITE statements, and
about truncations of various sorts of constants.

In 0.5.22 versus 0.5.21:

Fix Signal intrinsic so it offers portable support for 64-bit systems (such as Digital
Alphas running GNU /Linux).

Support ‘FORMAT (I<expr>)’ when expr is a compile-time constant INTEGER expression.

Fix g77 ‘-g’ option so procedures that use ENTRY can be stepped through, line by line,
in gdb.

80

In

In

In

In

Using and Porting GNU Fortran

Allow any REAL argument to intrinsics Second and CPU_Time.

Allow any numeric argument to intrinsics Int2 and Int8.

Use tempnam, if available, to open scratch files (as in ‘OPEN(STATUS=’SCRATCH’)’) so
that the TMPDIR environment variable, if present, is used.

Rename the gcc keyword restrict to __restrict__, to avoid rejecting valid, existing,
C programs. Support for restrict is now more like support for complex.

Fix ‘-fugly-comma’ to affect invocations of only external procedures. Restore rejection
of gratuitous trailing omitted arguments to intrinsics, as in ‘I=MAX(3,4,,)".

Fix compiler so it accepts ‘-fgnu-intrinsics-*" and ‘-fbadu77-intrinsics-*’ op-
tions.

EGCS 1.0.2 versus EGCS 1.0.1:

Fix compiler so it accepts ‘-fgnu-intrinsics-*" and ‘-fbadu77-intrinsics-*’ op-
tions.

EGCS 1.0.1 versus EGCS 1.0:

EGCS 1.0 versus g77 0.5.21:

Version 1.0 of egcs contains several regressions against version 0.5.21 of g77, due to
using the “vanilla” gcc back end instead of patching it to fix a few bugs and improve
performance in a few cases.

Features that have been dropped from this version of g77 due to their being imple-
mented via g77-specific patches to the gcc back end in previous releases include:

— Support for the C-language restrict keyword.

— Support for the ‘-W’ option warning about integer division by zero.

4

— The Intel x86-specific option ‘-malign-double’ applying to stack-allocated data
as well as statically-allocate data.

¢

Remove support for the ‘--driver’ option, as g77 now does all the driving, just like

gcc.

Allow any numeric argument to intrinsics Int2 and Int8.

0.5.21:

When the ‘-W’ option is specified, gcc, g77, and other GNU compilers that incorporate
the gce back end as modified by g77, issue a warning about integer division by constant
Z€ro.

New option ‘-Wno-globals’ disables warnings about “suspicious” use of a name both
as a global name and as the implicit name of an intrinsic, and warnings about dis-
agreements over the number or natures of arguments passed to global procedures, or
the natures of the procedures themselves.

The default is to issue such warnings, which are new as of this version of g77.

Chapter 7: User-visible Changes 81

In

New option ‘~fno-globals’ disables diagnostics about potentially fatal disagreements
analysis problems, such as disagreements over the number or natures of arguments
passed to global procedures, or the natures of those procedures themselves.

The default is to issue such diagnostics and flag the compilation as unsuccessful. With
this option, the diagnostics are issued as warnings, or, if ‘~Wno-globals’ is specified,
are not issued at all.

This option also disables inlining of global procedures, to avoid compiler crashes re-
sulting from coding errors that these diagnostics normally would identify.

Fix 1ibU77 routines that accept file and other names to strip trailing blanks from them,
for consistency with other implementations. Blanks may be forcibly appended to such
names by appending a single null character (‘CHAR(0)’) to the significant trailing blanks.

Fix CHMOD intrinsic to work with file names that have embedded blanks, commas, and
SO on.

Fix SIGNAL intrinsic so it accepts an optional third Status argument.
Make many changes to 1ibU77 intrinsics to support existing code more directly.

Such changes include allowing both subroutine and function forms of many routines,
changing MCLOCK() and TIME() to return INTEGER(KIND=1) wvalues, introducing
MCLOCK8() and TIME8() to return INTEGER(KIND=2) values, and placing functions
that are intended to perform side effects in a new intrinsic group, badu77.

Add options ‘-fbadu77-intrinsics-delete’, ‘-fbadu77-intrinsics-hide’, and so
on.

Add INT2 and INTS intrinsics.

Add CPU_TIME intrinsic.

Add ALARM intrinsic.

CTIME intrinsic now accepts any INTEGER argument, not just INTEGER (KIND=2).

g77 driver now prints version information (such as produced by g77 -v) to stderr
instead of stdout.

The ‘.r’ suffix now designates a Ratfor source file, to be preprocessed via the ratfor
command, available separately.

0.5.20:

The ‘-~fno-typeless-boz’ option is now the default.

This option specifies that non-decimal-radix constants using the prefixed-radix form
(such as ‘Z?1234°’") are to be interpreted as INTEGER(KIND=1) constants. Specify
‘~ftypeless-boz’ to cause such constants to be interpreted as typeless.

(Version 0.5.19 introduced ‘-fno-typeless-boz’ and its inverse.)

See Section 5.4 [Options Controlling Fortran Dialect], page 38, for information on the
‘~-ftypeless-boz’ option.

Options ‘-ff90-intrinsics-enable’ and ‘-fvxt-intrinsics-enable’ now are the
defaults.

Some programs might use names that clash with intrinsic names defined (and now
enabled) by these options or by the new 1ibU77 intrinsics. Users of such programs might

82

Using and Porting GNU Fortran

need to compile them differently (using, for example, ‘~ff90-intrinsics-disable’)
or, better yet, insert appropriate EXTERNAL statements specifying that these names are
not intended to be names of intrinsics.

The ALWAYS_FLUSH macro is no longer defined when building 1ibf2c, which should
result in improved 1/O performance, especially over NF'S.

Note: If you have code that depends on the behavior of 1ibf2c when built with
ALWAYS_FLUSH defined, you will have to modify 1ibf2c accordingly before building it
from this and future versions of g77.

See Section 14.4.8 [Output Assumed To Flush], page 261, for more information.

Dave Love’s implementation of 1ibU77 has been added to the version of 1ibf2c dis-
tributed with and built as part of g77. g77 now knows about the routines in this library
as intrinsics.

New option ‘-fvxt’ specifies that the source file is written in VXT Fortran, instead of
GNU Fortran.

See Section 9.6 [VXT Fortran|, page 193, for more information on the constructs rec-
ognized when the ‘-fvxt’ option is specified.

The ‘~fvxt-not-£90’ option has been deleted, along with its inverse, ‘~-f£90-not-vxt’.

If you used one of these deleted options, you should re-read the pertinent documentation
to determine which options, if any, are appropriate for compiling your code with this
version of g77.

See Chapter 9 [Other Dialects], page 187, for more information.

The ‘-fugly’ option now issues a warning, as it likely will be removed in a future
version.

(Enabling all the ‘~fugly-*’ options is unlikely to be feasible, or sensible, in the future,
so users should learn to specify only those ‘~fugly-*’ options they really need for a
particular source file.)

The ‘-fugly-assumed’ option, introduced in version 0.5.19, has been changed to better
accommodate old and new code.

See Section 9.9.2 [Ugly Assumed-Size Arrays|, page 196, for more information.

Related to supporting Alpha (AXP) machines, the LOC() intrinsic and %LOC() con-
struct now return values of INTEGER(KIND=0) type, as defined by the GNU Fortran
language.

This type is wide enough (holds the same number of bits) as the character-pointer type
on the machine.

On most machines, this won’t make a difference, whereas, on Alphas and other systems
with 64-bit pointers, the INTEGER(KIND=0) type is equivalent to INTEGER (KIND=2)
(often referred to as INTEGER*8) instead of the more common INTEGER (KIND=1) (often
referred to as INTEGER*4).

Emulate COMPLEX arithmetic in the g77 front end, to avoid bugs in complex support
in the gcc back end. New option ‘-fno-emulate-complex’ causes g77 to revert the
0.5.19 behavior.

Dummy arguments are no longer assumed to potentially alias (overlap) other dummy
arguments or COMMON areas when any of these are defined (assigned to) by Fortran code.

Chapter 7: User-visible Changes 83

This can result in faster and/or smaller programs when compiling with optimization
enabled, though on some systems this effect is observed only when ‘-fforce-addr’ also
is specified.
New options ‘-falias-check’, ‘-fargument-alias’, ‘-fargument-noalias’, and
‘-fno-argument-noalias-global’ control the way g77 handles potential aliasing.
See Section 14.4.7 [Aliasing Assumed To Work], page 259, for detailed information on
why the new defaults might result in some programs no longer working the way they
did when compiled by previous versions of g77.

e New option ‘-fugly-assign’ specifies that the same memory locations are to be used to
hold the values assigned by both statements ‘I = 3’ and ‘ASSIGN 10 TO I’, for example.
(Normally, g77 uses a separate memory location to hold assigned statement labels.)

See Section 9.9.7 [Ugly Assigned Labels], page 199, for more information.

e FORMAT and ENTRY statements now are allowed to precede IMPLICIT NONE statements.

e Enable full support of INTEGER(KIND=2) (often referred to as INTEGER*8) available in
1ibf2c and ‘f2c.h’ so that £2c users may make full use of its features via the g77
version of ‘f2c.h’ and the INTEGER(KIND=2) support routines in the g77 version of
libf2c.

e Improve g77 driver and 1ibf2c so that ‘g77 -v’ yields version information on the
library.

e The SNGL and FLOAT intrinsics now are specific intrinsics, instead of synonyms for the
generic intrinsic REAL.

e New intrinsics have been added. These are REALPART, IMAGPART, COMPLEX, LONG, and
SHORT.

e A new group of intrinsics, gnu, has been added to contain the new REALPART, IMAGPART,
and COMPLEX intrinsics. An old group, dcp, has been removed.

e Complain about industry-wide ambiguous references ‘REAL (expr)’ and ‘AIMAG (expr)’,
where expr is DOUBLE COMPLEX (or any complex type other than COMPLEX), unless
‘~f£90’ option specifies Fortran 90 interpretation or new ‘-fugly-complex’ option,
in conjunction with ‘-fnot-£90’, specifies £2c¢ interpretation.

In previous versions:

Information on previous versions is archived in ‘gcc/gcc/f/news.texi’ following the
test of the DOC-OLDNEWS macro.

84

Using and Porting GNU Fortran

Chapter 8: The GNU Fortran Language 85

8 The GNU Fortran Language

GNU Fortran supports a variety of extensions to, and dialects of, the Fortran language.
Its primary base is the ANSI FORTRAN 77 standard, currently available on the net-
work at http://www.fortran.com/fortran/F77_std/rjcnf0001.html or as monolithic
text at http://www.fortran.com/fortran/F77_std/f77_std.html. It offers some exten-
sions that are popular among users of UNIX £77 and £2c¢ compilers, some that are popular
among users of other compilers (such as Digital products), some that are popular among
users of the newer Fortran 90 standard, and some that are introduced by GNU Fortran.

(If you need a text on Fortran, a few freely available electronic references have pointers
from http://www.fortran.com/fortran/Books/. There is a ‘cooperative net project’,
User Notes on Fortran Programming at ftp://vms.huji.ac.il/fortran/ and mirrors
elsewhere; some of this material might not apply specifically to g77.)

Part of what defines a particular implementation of a Fortran system, such as g77, is
the particular characteristics of how it supports types, constants, and so on. Much of this
is left up to the implementation by the various Fortran standards and accepted practice in
the industry.

The GNU Fortran language is described below. Much of the material is organized along
the same lines as the ANSI FORTRAN 77 standard itself.

See Chapter 9 [Other Dialects|, page 187, for information on features g77 supports that
are not part of the GNU Fortran language.

Note: This portion of the documentation definitely needs a lot of work!

8.1 Direction of Language Development

The purpose of the following description of the GNU Fortran language is to promote
wide portability of GNU Fortran programs.

GNU Fortran is an evolving language, due to the fact that g77 itself is in beta test. Some
current features of the language might later be redefined as dialects of Fortran supported
by g77 when better ways to express these features are added to g77, for example. Such
features would still be supported by g77, but would be available only when one or more
command-line options were used.

The GNU Fortran language is distinct from the GNU Fortran compilation system (g77).

For example, g77 supports various dialects of Fortran—in a sense, these are languages
other than GNU Fortran—though its primary purpose is to support the GNU Fortran
language, which also is described in its documentation and by its implementation.

On the other hand, non-GNU compilers might offer support for the GNU Fortran lan-
guage, and are encouraged to do so.

Currently, the GNU Fortran language is a fairly fuzzy object. It represents something
of a cross between what g77 accepts when compiling using the prevailing defaults and what
this document describes as being part of the language.

Future versions of g77 are expected to clarify the definition of the language in the docu-
mentation. Often, this will mean adding new features to the language, in the form of both
new documentation and new support in g77. However, it might occasionally mean removing

86 Using and Porting GNU Fortran

a feature from the language itself to “dialect” status. In such a case, the documentation
would be adjusted to reflect the change, and g77 itself would likely be changed to require
one or more command-line options to continue supporting the feature.

The development of the GNU Fortran language is intended to strike a balance between:

e Serving as a mostly-upwards-compatible language from the de facto UNIX Fortran
dialect as supported by £77.

e Offering new, well-designed language features. Attributes of such features include not
making existing code any harder to read (for those who might be unaware that the new
features are not in use) and not making state-of-the-art compilers take longer to issue
diagnostics, among others.

e Supporting existing, well-written code without gratuitously rejecting non-standard con-
structs, regardless of the origin of the code (its dialect).

e Offering default behavior and command-line options to reduce and, where reasonable,
eliminate the need for programmers to make any modifications to code that already
works in existing production environments.

e Diagnosing constructs that have different meanings in different systems, languages,
and dialects, while offering clear, less ambiguous ways to express each of the different
meanings so programmers can change their code appropriately.

One of the biggest practical challenges for the developers of the GNU Fortran language
is meeting the sometimes contradictory demands of the above items.

For example, a feature might be widely used in one popular environment, but the exact
same code that utilizes that feature might not work as expected—perhaps it might mean
something entirely different—in another popular environment.

Traditionally, Fortran compilers—even portable ones—have solved this problem by sim-
ply offering the appropriate feature to users of the respective systems. This approach treats
users of various Fortran systems and dialects as remote “islands”, or camps, of program-
mers, and assume that these camps rarely come into contact with each other (or, especially,
with each other’s code).

Project GNU takes a radically different approach to software and language design, in
that it assumes that users of GNU software do not necessarily care what kind of underlying
system they are using, regardless of whether they are using software (at the user-interface
level) or writing it (for example, writing Fortran or C code).

As such, GNU users rarely need consider just what kind of underlying hardware (or, in
many cases, operating system) they are using at any particular time. They can use and write
software designed for a general-purpose, widely portable, heterogenous environment—the
GNU environment.

In line with this philosophy, GNU Fortran must evolve into a product that is widely
ported and portable not only in the sense that it can be successfully built, installed, and
run by users, but in the larger sense that its users can use it in the same way, and expect
largely the same behaviors from it, regardless of the kind of system they are using at any
particular time.

This approach constrains the solutions g77 can use to resolve conflicts between various

camps of Fortran users. If these two camps disagree about what a particular construct
should mean, g77 cannot simply be changed to treat that particular construct as having

Chapter 8: The GNU Fortran Language 87

one meaning without comment (such as a warning), lest the users expecting it to have the
other meaning are unpleasantly surprised that their code misbehaves when executed.

The use of the ASCII backslash character in character constants is an excellent (and still
somewhat unresolved) example of this kind of controversy. See Section 15.5.1 [Backslash in
Constants|, page 291. Other examples are likely to arise in the future, as g77 developers
strive to improve its ability to accept an ever-wider variety of existing Fortran code without
requiring significant modifications to said code.

Development of GNU Fortran is further constrained by the desire to avoid requiring
programmers to change their code. This is important because it allows programmers, ad-
ministrators, and others to more faithfully evaluate and validate g77 (as an overall product
and as new versions are distributed) without having to support multiple versions of their
programs so that they continue to work the same way on their existing systems (non-GNU
perhaps, but possibly also earlier versions of g77).

8.2 ANSI FORTRAN 77 Standard Support

GNU Fortran supports ANSI FORTRAN 77 with the following caveats. In summary, the
only ANSI FORTRAN 77 features g77 doesn’t support are those that are probably rarely
used in actual code, some of which are explicitly disallowed by the Fortran 90 standard.

8.2.1 No Passing External Assumed-length

g77 disallows passing of an external procedure as an actual argument if the procedure’s
type is declared CHARACTER* (*). For example:
CHARACTER* (*) CFUNC
EXTERNAL CFUNC
CALL FO0O0(CFUNC)
END

It isn’t clear whether the standard considers this conforming.

8.2.2 No Passing Dummy Assumed-length

g77 disallows passing of a dummy procedure as an actual argument if the procedure’s
type is declared CHARACTER* (*).
SUBROUTINE BAR(CFUNC)
CHARACTER* () CFUNC
EXTERNAL CFUNC
CALL FOO(CFUNC)
END

It isn’t clear whether the standard considers this conforming.

8.2.3 No Pathological Implied-DO

The DO variable for an implied-DO construct in a DATA statement may not be used as the
DO variable for an outer implied-DO construct. For example, this fragment is disallowed by
grT:

88 Using and Porting GNU Fortran

DATA ((A(I, DD, I=1, 10), I=1, 10) /.../

This also is disallowed by Fortran 90, as it offers no additional capabilities and would have
a variety of possible meanings.

Note that it is very unlikely that any production Fortran code tries to use this unsup-
ported construct.

8.2.4 No Useless Implied-DO

An array element initializer in an implied-DO construct in a DATA statement must contain
at least one reference to the DO variables of each outer implied-DO construct. For example,
this fragment is disallowed by g77:

DATA (4, I=1, 1) /1./
This also is disallowed by Fortran 90, as FORTRAN 77’s more permissive requirements
offer no additional capabilities. However, g77 doesn’t necessarily diagnose all cases where
this requirement is not met.

Note that it is very unlikely that any production Fortran code tries to use this unsup-
ported construct.

8.3 Conformance

(The following information augments or overrides the information in Section 1.4 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 1 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

The definition of the GNU Fortran language is akin to that of the ANSI FORTRAN
77 language in that it does not generally require conforming implementations to diagnose
cases where programs do not conform to the language.

However, g77 as a compiler is being developed in a way that is intended to enable it to
diagnose such cases in an easy-to-understand manner.

A program that conforms to the GNU Fortran language should, when compiled, linked,
and executed using a properly installed g77 system, perform as described by the GNU
Fortran language definition. Reasons for different behavior include, among others:

e Use of resources (memory—heap, stack, and so on; disk space; CPU time; etc.) exceeds
those of the system.

e Range and/or precision of calculations required by the program exceeds that of the
system.

e Excessive reliance on behaviors that are system-dependent (non-portable Fortran code).
e Bugs in the program.
e Bug in g77.
e Bugs in the system.
Despite these “loopholes”, the availability of a clear specification of the language of

programs submitted to g77, as this document is intended to provide, is considered an
important aspect of providing a robust, clean, predictable Fortran implementation.

The definition of the GNU Fortran language, while having no special legal status, can
therefore be viewed as a sort of contract, or agreement. This agreement says, in essence, “if

Chapter 8: The GNU Fortran Language 89

you write a program in this language, and run it in an environment (such as a g77 system)
that supports this language, the program should behave in a largely predictable way”.

8.4 Notation Used in This Chapter

(The following information augments or overrides the information in Section 1.5 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 1 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

In this chapter, “must” denotes a requirement, “may” denotes permission, and “must
not” and “may not” denote prohibition. Terms such as “might”, “should”, and “can”
generally add little or nothing in the way of weight to the GNU Fortran language itself, but
are used to explain or illustrate the language.

For example:

“The FROBNITZ statement must precede all executable
statements in a program unit, and may not specify any dummy
arguments. It may specify local or common variables and arrays.
Its use should be limited to portions of the program designed to
be non-portable and system-specific, because it might cause the
containing program unit to behave quite differently on different
systems.”

Insofar as the GNU Fortran language is specified, the requirements and permissions
denoted by the above sample statement are limited to the placement of the statement and
the kinds of things it may specify. The rest of the statement—the content regarding non-
portable portions of the program and the differing behavior of program units containing
the FROBNITZ statement—does not pertain the GNU Fortran language itself. That content
offers advice and warnings about the FROBNITZ statement.

Remember: The GNU Fortran language definition specifies both what constitutes a valid
GNU Fortran program and how, given such a program, a valid GNU Fortran implementation
is to interpret that program.

It is mot incumbent upon a valid GNU Fortran implementation to behave in any par-
ticular way, any consistent way, or any predictable way when it is asked to interpret input
that is not a valid GNU Fortran program.

Such input is said to have undefined behavior when interpreted by a valid GNU Fortran
implementation, though an implementation may choose to specify behaviors for some cases
of inputs that are not valid GNU Fortran programs.

Other notation used herein is that of the GNU texinfo format, which is used to generate
printed hardcopy, on-line hypertext (Info), and on-line HTML versions, all from a single
source document. This notation is used as follows:

o Keywords defined by the GNU Fortran language are shown in uppercase, as in: COMMON,
INTEGER, and BLOCK DATA.
Note that, in practice, many Fortran programs are written in lowercase—uppercase is
used in this manual as a means to readily distinguish keywords and sample Fortran-
related text from the prose in this document.

e Portions of actual sample program, input, or output text look like this: ‘Actual
program text’.

90 Using and Porting GNU Fortran

Generally, uppercase is used for all Fortran-specific and Fortran-related text, though
this does not always include literal text within Fortran code.

For example: ‘PRINT *, ’My name is Bob’’.

e A metasyntactic variable—that is, a name used in this document to serve as a place-
holder for whatever text is used by the user or programmer—appears as shown in the
following example:

“The INTEGER ivar statement specifies that ivar is a variable or array of type INTEGER.”

In the above example, any valid text may be substituted for the metasyntactic variable
ivar to make the statement apply to a specific instance, as long as the same text is
substituted for both occurrences of ivar.

e Ellipses (“...”) are used to indicate further text that is either unimportant or expanded
upon further, elsewhere.

e Names of data types are in the style of Fortran 90, in most cases.

See Section 8.7.1.3 [Kind Notation], page 98, for information on the relationship be-
tween Fortran 90 nomenclature (such as INTEGER(KIND=1)) and the more traditional,
less portably concise nomenclature (such as INTEGER*4).

8.5 Fortran Terms and Concepts

(The following information augments or overrides the information in Chapter 2 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 2 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

8.5.1 Syntactic Items

(Corresponds to Section 2.2 of ANSI X3.9-1978 FORTRAN 77.)

In GNU Fortran, a symbolic name is at least one character long, and has no arbitrary
upper limit on length. However, names of entities requiring external linkage (such as exter-
nal functions, external subroutines, and COMMON areas) might be restricted to some arbitrary
length by the system. Such a restriction is no more constrained than that of one through
six characters.

Underscores (‘_’) are accepted in symbol names after the first character (which must be
a letter).

8.5.2 Statements, Comments, and Lines

(Corresponds to Section 2.3 of ANSI X3.9-1978 FORTRAN 77.)

Use of an exclamation point (‘!”) to begin a trailing comment (a comment that extends
to the end of the same source line) is permitted under the following conditions:

e The exclamation point does not appear in column 6. Otherwise, it is treated as an
indicator of a continuation line.

e The exclamation point appears outside a character or Hollerith constant. Otherwise,
the exclamation point is considered part of the constant.

e The exclamation point appears to the left of any other possible trailing comment. That
is, a trailing comment may contain exclamation points in their commentary text.

Chapter 8: The GNU Fortran Language 91

Use of a semicolon (‘;’) as a statement separator is permitted under the following con-
ditions:
e The semicolon appears outside a character or Hollerith constant. Otherwise, the semi-
colon is considered part of the constant.

e The semicolon appears to the left of a trailing comment. Otherwise, the semicolon is
considered part of that comment.

e Neither a logical IF statement nor a non-construct WHERE statement (a Fortran 90
feature) may be followed (in the same, possibly continued, line) by a semicolon used
as a statement separator.

This restriction avoids the confusion that can result when reading a line such as:
IF (VALIDP) CALL F0OO; CALL BAR

Some readers might think the ‘CALL BAR’ is executed only if ‘VALIDP’ is .TRUE., while
others might assume its execution is unconditional.

(At present, g77 does not diagnose code that violates this restriction.)

8.5.3 Scope of Symbolic Names and Statement Labels

(Corresponds to Section 2.9 of ANSI X3.9-1978 FORTRAN 77.)

Included in the list of entities that have a scope of a program unit are construct names (a
Fortran 90 feature). See Section 8.10.3 [Construct Names|, page 104, for more information.

8.6 Characters, Lines, and Execution Sequence

(The following information augments or overrides the information in Chapter 3 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 3 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

8.6.1 GNU Fortran Character Set

(Corresponds to Section 3.1 of ANSI X3.9-1978 FORTRAN 77.)

Letters include uppercase letters (the twenty-six characters of the English alphabet) and
lowercase letters (their lowercase equivalent). Generally, lowercase letters may be used in
place of uppercase letters, though in character and Hollerith constants, they are distinct.

Special characters include:
e Semicolon (*;’)
e Exclamation point (‘!”)
e Double quote (‘")
e Backslash (‘\)
e Question mark (‘?”)
e Hash mark (‘#)
e Ampersand (‘&)
e Percent sign (‘%)

e Underscore (‘_")

92 Using and Porting GNU Fortran

e Open angle (‘<’)
e Close angle (>)

e The FORTRAN 77 special characters (SPC), ‘=", ‘47, ‘=" 7 /7 <,)7, ¢, <00,)
and ‘:7)

Note that this document refers to as space, while X3.9-1978 FORTRAN 77 refers
to it as blank.

8.6.2 Lines

(Corresponds to Section 3.2 of ANSI X3.9-1978 FORTRAN 77.)

The way a Fortran compiler views source files depends entirely on the implementation
choices made for the compiler, since those choices are explicitly left to the implementation
by the published Fortran standards.

The GNU Fortran language mandates a view applicable to UNIX-like text files—files that
are made up of an arbitrary number of lines, each with an arbitrary number of characters
(sometimes called stream-based files).

This view does not apply to types of files that are specified as having a particular number
of characters on every single line (sometimes referred to as record-based files).

Because a “line in a program unit is a sequence of 72 characters”, to quote X3.9-1978, the
GNU Fortran language specifies that a stream-based text file is translated to GNU Fortran
lines as follows:

e A newline in the file is the character that represents the end of a line of text to the un-
derlying system. For example, on ASCII-based systems, a newline is the character,
which has ASCII value 10 (decimal).

e Each newline in the file serves to end the line of text that precedes it (and that does
not contain a newline).

e The end-of-file marker (EOF) also serves to end the line of text that precedes it (and
that does not contain a newline).

e Any line of text that is shorter than 72 characters is padded to that length with spaces
(called “blanks” in the standard).

e Any line of text that is longer than 72 characters is truncated to that length, but the
truncated remainder must consist entirely of spaces.

e Characters other than newline and the GNU Fortran character set are invalid.
For the purposes of the remainder of this description of the GNU Fortran language, the
translation described above has already taken place, unless otherwise specified.

The result of the above translation is that the source file appears, in terms of the re-
mainder of this description of the GNU Fortran language, as if it had an arbitrary number
of 72-character lines, each character being among the GNU Fortran character set.

For example, if the source file itself has two newlines in a row, the second newline
becomes, after the above translation, a single line containing 72 spaces.

Chapter 8: The GNU Fortran Language 93

8.6.3 Continuation Line

(Corresponds to Section 3.2.3 of ANSI X3.9-1978 FORTRAN 77.)
A continuation line is any line that both
e Contains a continuation character, and
e Contains only spaces in columns 1 through 5
A continuation character is any character of the GNU Fortran character set other than

space ((SPQ)) or zero (‘0’) in column 6, or a digit (‘0’ through ‘9’) in column 7 through 72
of a line that has only spaces to the left of that digit.

The continuation character is ignored as far as the content of the statement is concerned.

The GNU Fortran language places no limit on the number of continuation lines in a
statement. In practice, the limit depends on a variety of factors, such as available memory,
statement content, and so on, but no GNU Fortran system may impose an arbitrary limit.

8.6.4 Statements

(Corresponds to Section 3.3 of ANSI X3.9-1978 FORTRAN 77.)

Statements may be written using an arbitrary number of continuation lines.

.

Statements may be separated using the semicolon (‘;’), except that the logical IF and
non-construct WHERE statements may not be separated from subsequent statements using
only a semicolon as statement separator.

The END PROGRAM, END SUBROUTINE, END FUNCTION, and END BLOCK DATA statements
are alternatives to the END statement. These alternatives may be written as normal
statements—they are not subject to the restrictions of the END statement.

However, no statement other than END may have an initial line that appears to be an
END statement—even END PROGRAM, for example, must not be written as:

END
&PROGRAM

8.6.5 Statement Labels

(Corresponds to Section 3.4 of ANSI X3.9-1978 FORTRAN 77.)
A statement separated from its predecessor via a semicolon may be labeled as follows:

e The semicolon is followed by the label for the statement, which in turn follows the
label.

e The label must be no more than five digits in length.
e The first digit of the label for the statement is not the first non-space character on a

line. Otherwise, that character is treated as a continuation character.

A statement may have only one label defined for it.

94 Using and Porting GNU Fortran

8.6.6 Order of Statements and Lines

(Corresponds to Section 3.5 of ANSI X3.9-1978 FORTRAN 77.)

Generally, DATA statements may precede executable statements. However, specification
statements pertaining to any entities initialized by a DATA statement must precede that DATA
statement. For example, after ‘DATA I/1/’, ‘INTEGER I’ is not permitted, but ‘INTEGER J’
is permitted.

The last line of a program unit may be an END statement, or may be:

An END PROGRAM statement, if the program unit is a main program.
An END SUBROUTINE statement, if the program unit is a subroutine.
An END FUNCTION statement, if the program unit is a function.

An END BLOCK DATA statement, if the program unit is a block data.

8.6.7 Including Source Text

Additional source text may be included in the processing of the source file via the
INCLUDE directive:

INCLUDE filename

The source text to be included is identified by filename, which is a literal GNU Fortran char-
acter constant. The meaning and interpretation of filename depends on the implementation,
but typically is a filename.

(g77 treats it as a filename that it searches for in the current directory and/or directories
specified via the ‘-I’ command-line option.)

The effect of the INCLUDE directive is as if the included text directly replaced the directive
in the source file prior to interpretation of the program. Included text may itself use
INCLUDE. The depth of nested INCLUDE references depends on the implementation, but
typically is a positive integer.

This virtual replacement treats the statements and INCLUDE directives in the included
text as syntactically distinct from those in the including text.

Therefore, the first non-comment line of the included text must not be a continuation
line. The included text must therefore have, after the non-comment lines, either an initial
line (statement), an INCLUDE directive, or nothing (the end of the included text).

Similarly, the including text may end the INCLUDE directive with a semicolon or the
end of the line, but it cannot follow an INCLUDE directive at the end of its line with a
continuation line. Thus, the last statement in an included text may not be continued.

Any statements between two INCLUDE directives on the same line are treated as if they
appeared in between the respective included texts. For example:

INCLUDE ’A’; PRINT *, ’B’; INCLUDE ’C’; END PROGRAM

If the text included by ‘INCLUDE ’A’’ constitutes a ‘PRINT *, ’A’’ statement and the text
included by ‘INCLUDE ’C’’ constitutes a ‘PRINT *, ’C’’ statement, then the output of the
above sample program would be

A

B

C

Chapter 8: The GNU Fortran Language 95

(with suitable allowances for how an implementation defines its handling of output).

Included text must not include itself directly or indirectly, regardless of whether the
filename used to reference the text is the same.

Note that INCLUDE is mot a statement. As such, it is neither a non-executable or ex-
ecutable statement. However, if the text it includes constitutes one or more executable
statements, then the placement of INCLUDE is subject to effectively the same restrictions as
those on executable statements.

An INCLUDE directive may be continued across multiple lines as if it were a statement.
This permits long names to be used for filename.

8.6.8 Cpp-style directives

cpp output-style # directives (see section “C Preprocessor Output” in The C Preproces-
sor) are recognized by the compiler even when the preprocessor isn’t run on the input (as
it is when compiling ‘. F’ files). (Note the distinction between these cpp # output directives
and #line input directives.)

8.7 Data Types and Constants

(The following information augments or overrides the information in Chapter 4 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 4 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

To more concisely express the appropriate types for entities, this document uses the
more concise Fortran 90 nomenclature such as INTEGER (KIND=1) instead of the more tradi-
tional, but less portably concise, byte-size-based nomenclature such as INTEGER*4, wherever
reasonable.

When referring to generic types—in contexts where the specific precision and range of
a type are not important—this document uses the generic type names INTEGER, LOGICAL,
REAL, COMPLEX, and CHARACTER.

In some cases, the context requires specification of a particular type. This document
uses the ‘KIND=" notation to accomplish this throughout, sometimes supplying the more
traditional notation for clarification, though the traditional notation might not work the
same way on all GNU Fortran implementations.

Use of ‘KIND=" makes this document more concise because g77 is able to define values
for ‘KIND=" that have the same meanings on all systems, due to the way the Fortran 90
standard specifies these values are to be used.

(In particular, that standard permits an implementation to arbitrarily assign nonnegative
values. There are four distinct sets of assignments: one to the CHARACTER type; one to the
INTEGER type; one to the LOGICAL type; and the fourth to both the REAL and COMPLEX types.
Implementations are free to assign these values in any order, leave gaps in the ordering of
assignments, and assign more than one value to a representation.)

This makes ‘KIND=" values superior to the values used in non-standard statements such
as ‘INTEGER*4’, because the meanings of the values in those statements vary from machine
to machine, compiler to compiler, even operating system to operating system.

96 Using and Porting GNU Fortran

However, use of ‘KIND="is not generally recommended when writing portable code (un-
less, for example, the code is going to be compiled only via g77, which is a widely ported
compiler). GNU Fortran does not yet have adequate language constructs to permit use of
‘KIND=’"in a fashion that would make the code portable to Fortran 90 implementations; and,
this construct is known to not be accepted by many popular FORTRAN 77 implementa-
tions, so it cannot be used in code that is to be ported to those.

The distinction here is that this document is able to use specific values for ‘KIND=" to
concisely document the types of various operations and operands.

A Fortran program should use the FORTRAN 77 designations for the appropriate GNU
Fortran types—such as INTEGER for INTEGER (KIND=1), REAL for REAL (KIND=1), and DOUBLE
COMPLEX for COMPLEX (KIND=2)—and, where no such designations exist, make use of appro-
priate techniques (preprocessor macros, parameters, and so on) to specify the types in a
fashion that may be easily adjusted to suit each particular implementation to which the
program is ported. (These types generally won’t need to be adjusted for ports of g77.)

Further details regarding GNU Fortran data types and constants are provided below.

8.7.1 Data Types

(Corresponds to Section 4.1 of ANSI X3.9-1978 FORTRAN 77.)
GNU Fortran supports these types:

Integer (generic type INTEGER)

Real (generic type REAL)

Double precision

Complex (generic type COMPLEX)

Logical (generic type LOGICAL)

Character (generic type CHARACTER)

Double Complex

NS o W=

(The types numbered 1 through 6 above are standard FORTRAN 77 types.)

The generic types shown above are referred to in this document using only their generic
type names. Such references usually indicate that any specific type (kind) of that generic
type is valid.

For example, a context described in this document as accepting the COMPLEX type also
is likely to accept the DOUBLE COMPLEX type.

The GNU Fortran language supports three ways to specify a specific kind of a generic
type.

8.7.1.1 Double Notation

The GNU Fortran language supports two uses of the keyword DOUBLE to specify a specific
kind of type:

e DOUBLE PRECISION, equivalent to REAL (KIND=2)
e DOUBLE COMPLEX, equivalent to COMPLEX (KIND=2)

Chapter 8: The GNU Fortran Language 97

Use one of the above forms where a type name is valid.

While use of this notation is popular, it doesn’t scale well in a language or dialect rich
in intrinsic types, as is the case for the GNU Fortran language (especially planned future
versions of it).

After all, one rarely sees type names such as ‘DOUBLE INTEGER’, ‘QUADRUPLE REAL’, or
‘QUARTER INTEGER’. Instead, INTEGER*8, REAL*16, and INTEGER*1 often are substituted for
these, respectively, even though they do not always have the same meanings on all systems.
(And, the fact that ‘DOUBLE REAL’ does not exist as such is an inconsistency.)

Therefore, this document uses “double notation” only on occasion for the benefit of those
readers who are accustomed to it.

8.7.1.2 Star Notation

The following notation specifies the storage size for a type:
generic-type*n
generic-type must be a generic type—one of INTEGER, REAL, COMPLEX, LOGICAL, or

CHARACTER. n must be one or more digits comprising a decimal integer number greater
than zero.

Use the above form where a type name is valid.

The ‘*n’ notation specifies that the amount of storage occupied by variables and array
elements of that type is n times the storage occupied by a CHARACTER*1 variable.

This notation might indicate a different degree of precision and/or range for such vari-
ables and array elements, and the functions that return values of types using this notation.
It does not limit the precision or range of values of that type in any particular way—use
explicit code to do that.

Further, the GNU Fortran language requires no particular values for n to be supported
by an implementation via the ‘*n’ notation. g77 supports INTEGER*1 (as INTEGER (KIND=3))
on all systems, for example, but not all implementations are required to do so, and g77 is
known to not support REAL*1 on most (or all) systems.

As a result, except for generic-type of CHARACTER, uses of this notation should be limited
to isolated portions of a program that are intended to handle system-specific tasks and are
expected to be non-portable.

(Standard FORTRAN 77 supports the ‘*n’ notation for only CHARACTER, where it sig-
nifies not only the amount of storage occupied, but the number of characters in entities of
that type. However, almost all Fortran compilers have supported this notation for generic
types, though with a variety of meanings for n.)

Specifications of types using the ‘*n’ notation always are interpreted as specifications of
the appropriate types described in this document using the ‘KIND=n’ notation, described
below.

While use of this notation is popular, it doesn’t serve well in the context of a widely
portable dialect of Fortran, such as the GNU Fortran language.

For example, even on one particular machine, two or more popular Fortran compilers
might well disagree on the size of a type declared INTEGER*2 or REAL*16. Certainly there is
known to be disagreement over such things among Fortran compilers on different systems.

98 Using and Porting GNU Fortran

Further, this notation offers no elegant way to specify sizes that are not even multiples
of the “byte size” typically designated by INTEGER*1. Use of “absurd” values (such as
INTEGER*1000) would certainly be possible, but would perhaps be stretching the original
intent of this notation beyond the breaking point in terms of widespread readability of
documentation and code making use of it.

Therefore, this document uses “star notation” only on occasion for the benefit of those
readers who are accustomed to it.

8.7.1.3 Kind Notation

The following notation specifies the kind-type selector of a type:
generic-type (KIND=n)
Use the above form where a type name is valid.
generic-type must be a generic type—one of INTEGER, REAL, COMPLEX, LOGICAL, or
CHARACTER. n must be an integer initialization expression that is a positive, nonzero value.

Programmers are discouraged from writing these values directly into their code. Future
versions of the GNU Fortran language will offer facilities that will make the writing of code
portable to g77 and Fortran 90 implementations simpler.

However, writing code that ports to existing FORTRAN 77 implementations depends
on avoiding the ‘KIND=" construct.
The ‘KIND=’ construct is thus useful in the context of GNU Fortran for two reasons:
e It provides a means to specify a type in a fashion that is portable across all GNU Fortran
implementations (though not other FORTRAN 77 and Fortran 90 implementations).

e It provides a sort of Rosetta stone for this document to use to concisely describe the
types of various operations and operands.

The values of n in the GNU Fortran language are assigned using a scheme that:

e Attempts to maximize the ability of readers of this document to quickly familiarize
themselves with assignments for popular types

e Provides a unique value for each specific desired meaning

e Provides a means to automatically assign new values so they have a “natural” rela-
tionship to existing values, if appropriate, or, if no such relationship exists, will not
interfere with future values assigned on the basis of such relationships

e Avoids using values that are similar to values used in the existing, popular ‘*n’ notation,
to prevent readers from expecting that these implied correspondences work on all GNU
Fortran implementations

The assignment system accomplishes this by assigning to each “fundamental meaning”
of a specific type a unique prime number. Combinations of fundamental meanings—for
example, a type that is two times the size of some other type—are assigned values of n that
are the products of the values for those fundamental meanings.

A prime value of n is never given more than one fundamental meaning, to avoid situations
where some code or system cannot reasonably provide those meanings in the form of a single
type.

The values of n assigned so far are:

Chapter 8: The GNU Fortran Language 99

KIND=0

KIND=1

KIND=2

KIND=3

KIND=5

KIND=7

This value is reserved for future use.

The planned future use is for this value to designate, explicitly, context-sensitive
kind-type selection. For example, the expression ‘1D0 * 0.1_0" would be equiv-
alent to ‘1DO * 0.1D0O’.

This corresponds to the default types for REAL, INTEGER, LOGICAL, COMPLEX,
and CHARACTER, as appropriate.

These are the “default” types described in the Fortran 90 standard, though
that standard does not assign any particular ‘KIND=" value to these types.

(Typically, these are REAL*4, INTEGER*4, LOGICAL*4, and COMPLEX*8.)

This corresponds to types that occupy twice as much storage as the
default types. REAL(KIND=2) is DOUBLE PRECISION (typically REAL*8),
COMPLEX (KIND=2) is DOUBLE COMPLEX (typically COMPLEX*16),

These are the “double precision” types described in the Fortran 90 standard,
though that standard does not assign any particular ‘KIND=" value to these
types.

n of 4 thus corresponds to types that occupy four times as much storage as the
default types, n of 8 to types that occupy eight times as much storage, and so
on.

The INTEGER(KIND=2) and LOGICAL(KIND=2) types are not necessarily sup-
ported by every GNU Fortran implementation.

This corresponds to types that occupy as much storage as the default CHARACTER
type, which is the same effective type as CHARACTER (KIND=1) (making that type
effectively the same as CHARACTER (KIND=3)).

(Typically, these are INTEGER*1 and LOGICAL*1.)

n of 6 thus corresponds to types that occupy twice as much storage as the n=3
types, n of 12 to types that occupy four times as much storage, and so on.

These are not necessarily supported by every GNU Fortran implementation.

This corresponds to types that occupy half the storage as the default (n=1)
types.
(Typically, these are INTEGER*2 and LOGICAL*2.)

n of 25 thus corresponds to types that occupy one-quarter as much storage as
the default types.

These are not necessarily supported by every GNU Fortran implementation.

This is valid only as INTEGER (KIND=7) and denotes the INTEGER type that has
the smallest storage size that holds a pointer on the system.

A pointer representable by this type is capable of uniquely addressing a
CHARACTER*1 variable, array, array element, or substring.

(Typically this is equivalent to INTEGER*4 or, on 64-bit systems, INTEGER*8.
In a compatible C implementation, it typically would be the same size and
semantics of the C type void *.)

100 Using and Porting GNU Fortran

Note that these are proposed correspondences and might change in future versions of
g77—avoid writing code depending on them while g77, and therefore the GNU Fortran
language it defines, is in beta testing.

Values not specified in the above list are reserved to future versions of the GNU Fortran
language.

Implementation-dependent meanings will be assigned new, unique prime numbers so as
to not interfere with other implementation-dependent meanings, and offer the possibility of
increasing the portability of code depending on such types by offering support for them in
other GNU Fortran implementations.

Other meanings that might be given unique values are:
e Types that make use of only half their storage size for representing precision and range.

For example, some compilers offer options that cause INTEGER types to occupy the
amount of storage that would be needed for INTEGER(KIND=2) types, but the range
remains that of INTEGER (KIND=1).

e The IEEE single floating-point type.

e Types with a specific bit pattern (endianness), such as the little-endian form of
INTEGER(KIND=1). These could permit, conceptually, use of portable code and
implementations on data files written by existing systems.

Future prime numbers should be given meanings in as incremental a fashion as possible,
to allow for flexibility and expressiveness in combining types.

For example, instead of defining a prime number for little-endian IEEE doubles, one
prime number might be assigned the meaning “little-endian”, another the meaning “IEEE
double”, and the value of n for a little-endian IEEE double would thus naturally be the
product of those two respective assigned values. (It could even be reasonable to have
IEEE values result from the products of prime values denoting exponent and fraction sizes
and meanings, hidden bit usage, availability and representations of special values such as
subnormals, infinities, and Not-A-Numbers (NaNs), and so on.)

This assignment mechanism, while not inherently required for future versions of the
GNU Fortran language, is worth using because it could ease management of the “space” of
supported types much easier in the long run.

The above approach suggests a mechanism for specifying inheritance of intrinsic (built-
in) types for an entire, widely portable product line. It is certainly reasonable that, unlike
programmers of other languages offering inheritance mechanisms that employ verbose names
for classes and subclasses, along with graphical browsers to elucidate the relationships,
Fortran programmers would employ a mechanism that works by multiplying prime numbers
together and finding the prime factors of such products.

Most of the advantages for the above scheme have been explained above. One disadvan-
tage is that it could lead to the defining, by the GNU Fortran language, of some fairly large
prime numbers. This could lead to the GNU Fortran language being declared “munitions”
by the United States Department of Defense.

8.7.2 Constants

(Corresponds to Section 4.2 of ANSI X3.9-1978 FORTRAN 77.)
A typeless constant has one of the following forms:

Chapter 8: The GNU Fortran Language 101

> binary-digits’B
> octal-digits’0
> hexadecimal-digits’Z
> hexadecimal-digits’X
binary-digits, octal-digits, and hexadecimal-digits are nonempty strings of characters in the

set ‘017, ‘01234567, and ‘0123456789ABCDEFabcdef’, respectively. (The value for ‘A’ (and
‘a’) is 10, for ‘B’ and ‘b’ is 11, and so on.)

A prefix-radix constant, such as ‘Z’ABCD’’, can optionally be treated as typeless.
See Section 5.4 [Options Controlling Fortran Dialect], page 38, for information on the
‘~ftypeless-boz’ option.

Typeless constants have values that depend on the context in which they are used.

All other constants, called typed constants, are interpreted—converted to internal form—
according to their inherent type. Thus, context is never a determining factor for the type,
and hence the interpretation, of a typed constant. (All constants in the ANST FORTRAN
77 language are typed constants.)

For example, ‘1’ is always type INTEGER(KIND=1) in GNU Fortran (called default IN-
TEGER in Fortran 90), ‘9.435784839284958’ is always type REAL(KIND=1) (even if the
additional precision specified is lost, and even when used in a REAL(KIND=2) context), ‘1E0’
is always type REAL(KIND=2), and ‘1D0’ is always type REAL (KIND=2).

8.7.3 Integer Type

(Corresponds to Section 4.3 of ANSI X3.9-1978 FORTRAN 77.)
An integer constant also may have one of the following forms:
B’ binary-digits’
0’ octal-digits’
Z’ hexadecimal-digits’
X’ hexadecimal-digits’
binary-digits, octal-digits, and hexadecimal-digits are nonempty strings of characters in the

set ‘017, ‘01234567, and ‘0123456789ABCDEFabcdef’, respectively. (The value for ‘A’ (and
‘a’) is 10, for ‘B’ and ‘b’ is 11, and so on.)

8.7.4 Character Type

(Corresponds to Section 4.8 of ANSI X3.9-1978 FORTRAN 77.)

A character constant may be delimited by a pair of double quotes (‘") instead of apos-
trophes. In this case, an apostrophe within the constant represents a single apostrophe,
while a double quote is represented in the source text of the constant by two consecutive
double quotes with no intervening spaces.

A character constant may be empty (have a length of zero).

A character constant may include a substring specification, The value of such a constant
is the value of the substring—for example, the value of ‘>hello’ (3:5)’ is the same as the
value of ‘’110”’.

102 Using and Porting GNU Fortran

8.8 Expressions

(The following information augments or overrides the information in Chapter 6 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 6 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

8.8.1 The %L0OC() Construct

%LOC (arg)

The %L0OC() construct is an expression that yields the value of the location of its ar-
gument, arg, in memory. The size of the type of the expression depends on the system—
typically, it is equivalent to either INTEGER(KIND=1) or INTEGER(KIND=2), though it is
actually type INTEGER (KIND=7).

The argument to %LOC() must be suitable as the left-hand side of an assignment state-
ment. That is, it may not be a general expression involving operators such as addition,
subtraction, and so on, nor may it be a constant.

Use of %LOC() is recommended only for code that is accessing facilities outside of GNU
Fortran, such as operating system or windowing facilities. It is best to constrain such uses
to isolated portions of a program—portions that deal specifically and exclusively with low-
level, system-dependent facilities. Such portions might well provide a portable interface for
use by the program as a whole, but are themselves not portable, and should be thoroughly
tested each time they are rebuilt using a new compiler or version of a compiler.

Do not depend on %LOC() returning a pointer that can be safely used to define (change)
the argument. While this might work in some circumstances, it is hard to predict whether it
will continue to work when a program (that works using this unsafe behavior) is recompiled
using different command-line options or a different version of g77.

Generally, %L0OC() is safe when used as an argument to a procedure that makes use of
the value of the corresponding dummy argument only during its activation, and only when
such use is restricted to referencing (reading) the value of the argument to %4LOC().

Implementation Note: Currently, g77 passes arguments (those not passed using a con-
struct such as %VAL()) by reference or descriptor, depending on the type of the actual
argument. Thus, given ‘INTEGER I’, ‘CALL FOO(I)’ would seem to mean the same thing as
‘CALL FOO(%VAL(%L0OC(I)))’, and in fact might compile to identical code.

However, ‘CALL F0O (%VAL(%L0OC(I)))’ emphatically means “pass, by value, the address
of ‘I’ in memory”. While ‘CALL FOO(I)’ might use that same approach in a particular
version of g77, another version or compiler might choose a different implementation, such
as copy-in/copy-out, to effect the desired behavior—and which will therefore not necessarily
compile to the same code as would ‘CALL FOO (%VAL(%LOC(I)))’ using the same version or
compiler.

See Chapter 13 [Debugging and Interfacing], page 239, for detailed information on how
this particular version of g77 implements various constructs.

8.9 Specification Statements

(The following information augments or overrides the information in Chapter 8 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 8 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

Chapter 8: The GNU Fortran Language 103

8.9.1 NAMELIST Statement

The NAMELIST statement, and related I/O constructs, are supported by the GNU Fortran
language in essentially the same way as they are by f2c.

This follows Fortran 90 with the restriction that on NAMELIST input, subscripts must
have the form

subscript [: subscript [: stride]]
i.e.
&xx x(1:3,8:10:2)=1,2,3,4,5,6/
is allowed, but not, say,
&xx x(:3,8::2)=1,2,3,4,5,6/
As an extension of the Fortran 90 form, $ and $END may be used in place of & and / in
NAMELIST input, so that
$&xx x(1:3,8:10:2)=1,2,3,4,5,6 $end
could be used instead of the example above.

8.9.2 DOUBLE COMPLEX Statement

DOUBLE COMPLEX is a type-statement (and type) that specifies the type COMPLEX (KIND=2)
in GNU Fortran.

8.10 Control Statements

(The following information augments or overrides the information in Chapter 11 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 11 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

8.10.1 DO WHILE

The DO WHILE statement, a feature of both the MIL-STD 1753 and Fortran 90 stan-
dards, is provided by the GNU Fortran language. The Fortran 90 “do forever” statement
comprising just DO is also supported.

8.10.2 END DO

The END DO statement is provided by the GNU Fortran language.
This statement is used in one of two ways:

e The Fortran 90 meaning, in which it specifies the termination point of a single DO loop
started with a DO statement that specifies no termination label.

e The MIL-STD 1753 meaning, in which it specifies the termination point of one or more
DO loops, all of which start with a DO statement that specify the label defined for the
END DO statement.

This kind of END DO statement is merely a synonym for CONTINUE, except it is permitted
only when the statement is labeled and a target of one or more labeled DO loops.

It is expected that this use of END DO will be removed from the GNU Fortran language
in the future, though it is likely that it will long be supported by g77 as a dialect form.

104 Using and Porting GNU Fortran

8.10.3 Construct Names

The GNU Fortran language supports construct names as defined by the Fortran 90
standard. These names are local to the program unit and are defined as follows:

construct-name: block-statement

Here, construct-name is the construct name itself; its definition is connoted by the single
colon (‘:’); and block-statement is an IF, DO, or SELECT CASE statement that begins a block.

A Dblock that is given a construct name must also specify the same construct name in its
termination statement:

END block construct-name

Here, block must be IF, DO, or SELECT, as appropriate.

8.10.4 The CYCLE and EXIT Statements

The CYCLE and EXIT statements specify that the remaining statements in the current
iteration of a particular active (enclosing) DO loop are to be skipped.

CYCLE specifies that these statements are skipped, but the END DO statement that marks
the end of the DO loop be executed—that is, the next iteration, if any, is to be started. If
the statement marking the end of the DO loop is not END DO—in other words, if the loop is
not a block DO—the CYCLE statement does not execute that statement, but does start the
next iteration (if any).

EXIT specifies that the loop specified by the DO construct is terminated.

The DO loop affected by CYCLE and EXIT is the innermost enclosing DO loop when the
following forms are used:

CYCLE
EXIT
Otherwise, the following forms specify the construct name of the pertinent DO loop:
CYCLE construct-name
EXIT construct-name

CYCLE and EXIT can be viewed as glorified GO TO statements. However, they cannot be
easily thought of as GO TO statements in obscure cases involving FORTRAN 77 loops. For
example:

DO 10 I 1, 5
DO 10 J =1, 5
IF (J .EQ. 5) EXIT
DO 10K =1, 5
IF (K .EQ. 3) CYCLE
10 PRINT *, ’I=’, I, ’ J=’, J, > K=’, K
20 CONTINUE

In particular, neither the EXIT nor CYCLE statements above are equivalent to a GO TO state-
ment to either label ‘10’ or ‘20°.

To understand the effect of CYCLE and EXIT in the above fragment, it is helpful to first
translate it to its equivalent using only block DO loops:

Chapter 8: The GNU Fortran Language 105

DOI =1, 5
DO J=1,5
IF (J .EQ. 5) EXIT
DOK=1, 5
IF (K .EQ. 3) CYCLE
10 PRINT *, ’I=’, I, ’ J=’, J, > K=’, K
END DO
END DO
END DO

20 CONTINUE

Adding new labels allows translation of CYCLE and EXIT to GO TO so they may be more
easily understood by programmers accustomed to FORTRAN coding:

DOI=1, 5
D0OJ=1, 5
IF (J .EQ. 5) GOTO 18
DOK=1, 5
IF (K .EQ. 3) GO TO 12
10 PRINT *, *I=’, I, > J=, J, > K=’, K
12 END DO
END DO
18 END DO

20 CONTINUE
Thus, the CYCLE statement in the innermost loop skips over the PRINT statement as it begins
the next iteration of the loop, while the EXIT statement in the middle loop ends that loop
but not the outermost loop.

8.11 Functions and Subroutines

(The following information augments or overrides the information in Chapter 15 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 15 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

8.11.1 The %VAL() Construct
VAL (arg)

The %VAL() construct specifies that an argument, arg, is to be passed by value, instead
of by reference or descriptor.

%VAL Q) is restricted to actual arguments in invocations of external procedures.

Use of %VAL(Q) is recommended only for code that is accessing facilities outside of GNU
Fortran, such as operating system or windowing facilities. It is best to constrain such uses
to isolated portions of a program—portions the deal specifically and exclusively with low-
level, system-dependent facilities. Such portions might well provide a portable interface for
use by the program as a whole, but are themselves not portable, and should be thoroughly
tested each time they are rebuilt using a new compiler or version of a compiler.

Implementation Note: Currently, g77 passes all arguments either by reference or by
descriptor.

106 Using and Porting GNU Fortran

Thus, use of 4VAL() tends to be restricted to cases where the called procedure is written
in a language other than Fortran that supports call-by-value semantics. (C is an example
of such a language.)

See Section 13.2 [Procedures (SUBROUTINE and FUNCTION)], page 240, for detailed
information on how this particular version of g77 passes arguments to procedures.

8.11.2 The %REF() Construct

JREF (arg)

The %REF () construct specifies that an argument, arg, is to be passed by reference,
instead of by value or descriptor.

%REF () is restricted to actual arguments in invocations of external procedures.

Use of %REF () is recommended only for code that is accessing facilities outside of GNU
Fortran, such as operating system or windowing facilities. It is best to constrain such uses
to isolated portions of a program—portions the deal specifically and exclusively with low-
level, system-dependent facilities. Such portions might well provide a portable interface for
use by the program as a whole, but are themselves not portable, and should be thoroughly
tested each time they are rebuilt using a new compiler or version of a compiler.

Do not depend on %REF () supplying a pointer to the procedure being invoked. While that
is a likely implementation choice, other implementation choices are available that preserve
Fortran pass-by-reference semantics without passing a pointer to the argument, arg. (For
example, a copy-in/copy-out implementation.)

Implementation Note: Currently, g77 passes all arguments (other than variables and
arrays of type CHARACTER) by reference. Future versions of, or dialects supported by, g77
might not pass CHARACTER functions by reference.

Thus, use of %4REF () tends to be restricted to cases where arg is type CHARACTER but the
called procedure accesses it via a means other than the method used for Fortran CHARACTER
arguments.

See Section 13.2 [Procedures (SUBROUTINE and FUNCTION)], page 240, for detailed
information on how this particular version of g77 passes arguments to procedures.

8.11.3 The %DESCR() Construct

%DESCR (arg)

The %DESCR() construct specifies that an argument, arg, is to be passed by descriptor,
instead of by value or reference.

%DESCR() is restricted to actual arguments in invocations of external procedures.

Use of %DESCR () is recommended only for code that is accessing facilities outside of GNU
Fortran, such as operating system or windowing facilities. It is best to constrain such uses
to isolated portions of a program—portions the deal specifically and exclusively with low-
level, system-dependent facilities. Such portions might well provide a portable interface for
use by the program as a whole, but are themselves not portable, and should be thoroughly
tested each time they are rebuilt using a new compiler or version of a compiler.

Do not depend on %DESCR() supplying a pointer and/or a length passed by value to the
procedure being invoked. While that is a likely implementation choice, other implemen-
tation choices are available that preserve the pass-by-reference semantics without passing

Chapter 8: The GNU Fortran Language 107

a pointer to the argument, arg. (For example, a copy-in/copy-out implementation.) And,
future versions of g77 might change the way descriptors are implemented, such as passing
a single argument pointing to a record containing the pointer/length information instead of
passing that same information via two arguments as it currently does.

Implementation Note: Currently, g77 passes all variables and arrays of type CHARACTER
by descriptor. Future versions of, or dialects supported by, g77 might pass CHARACTER
functions by descriptor as well.

Thus, use of ¥DESCR() tends to be restricted to cases where arg is not type CHARACTER
but the called procedure accesses it via a means similar to the method used for Fortran
CHARACTER arguments.

See Section 13.2 [Procedures (SUBROUTINE and FUNCTION)], page 240, for detailed
information on how this particular version of g77 passes arguments to procedures.

8.11.4 Generics and Specifics

The ANSI FORTRAN 77 language defines generic and specific intrinsics. In short, the
distinctions are:

e Specific intrinsics have specific types for their arguments and a specific return type.
e (leneric intrinsics are treated, on a case-by-case basis in the program’s source code, as
one of several possible specific intrinsics.

Typically, a generic intrinsic has a return type that is determined by the type of one
or more of its arguments.

The GNU Fortran language generalizes these concepts somewhat, especially by providing
intrinsic subroutines and generic intrinsics that are treated as either a specific intrinsic
subroutine or a specific intrinsic function (e.g. SECOND).

However, GNU Fortran avoids generalizing this concept to the point where existing code
would be accepted as meaning something possibly different than what was intended.

For example, ABS is a generic intrinsic, so all working code written using ABS of an
INTEGER argument expects an INTEGER return value. Similarly, all such code expects that
ABS of an INTEGER*2 argument returns an INTEGER*2 return value.

Yet, IABS is a specific intrinsic that accepts only an INTEGER (KIND=1) argument. Code
that passes something other than an INTEGER(KIND=1) argument to IABS is not valid GNU
Fortran code, because it is not clear what the author intended.

For example, if ‘J’ is INTEGER (KIND=6), ‘TABS(J)’ is not defined by the GNU Fortran
language, because the programmer might have used that construct to mean any of the
following, subtly different, things:

e Convert ‘J’ to INTEGER(KIND=1) first (as if ‘TABS(INT(J))’ had been written).

e Convert the result of the intrinsic to INTEGER(KIND=1) (as if ‘INT(ABS(J))’ had been
written).

e No conversion (as if ‘ABS(J)’ had been written).
The distinctions matter especially when types and values wider than INTEGER (KIND=1)

(such as INTEGER(KIND=2)), or when operations performing more “arithmetic” than
absolute-value, are involved.

108

The following sample program is not a valid GNU Fortran program, but might be ac-
cepted by other compilers. If so, the output is likely to be revealing in terms of how a given
compiler treats intrinsics (that normally are specific) when they are given arguments that

do not

Qa0

QQ

C
C
C

conform to their stated requirements:

PROGRAM JCB002
Version 1:

Using and Porting GNU Fortran

Modified 1999-02-15 (Burley) to delete my email address.

Modified 1997-05-21 (Burley) to accommodate compilers that implement

INT(I1-I2) as INT(I1)-INT(I2) given INTEGER*2 I1,I2.

Version O:

Written by James Craig Burley 1997-02-20.

Purpose:

Determine how compilers handle non-standard IDIM

on INTEGER*2 operands, which presumably can be
extrapolated into understanding how the compiler
generally treats specific intrinsics that are passed

arguments not of the correct types.

If your compiler implements INTEGER*2 and INTEGER
as the same type, change all INTEGER*2 below to

INTEGER*1.

INTEGER*2 IO, I4

INTEGER I1, I2, I3
INTEGER*2 ISMALL, ILARGE
INTEGER*2 ITOOLG, ITWO
INTEGER*2 ITMP

LOGICAL L2, L3, L4

Find smallest INTEGER*2 number.

ISMALL=0
10 I0 = ISMALL-1
IF ((I0 .GE. ISMALL) .0OR. (IO+1
ISMALL = IO
GOTO 10
20 CONTINUE

Find largest INTEGER*2 number.

ILARGE=0
30 I0 = ILARGE+1
IF ((I0 .LE. ILARGE) .OR. (I0-1
ILARGE = IO
GOTO 30
40 CONTINUE

ISMALL)) GOTO 20

ILARGE)) GOTO 40

Chapter 8: The GNU Fortran Language 109

C Multiplying by two adds stress to the situation.
C
ITWO = 2
C
C Need a number that, added to -2, is too wide to fit in I*2.
C
ITOOLG = ISMALL
C
C Use IDIM the straightforward way.
C
I1 = IDIM (ILARGE, ISMALL) * ITWO + ITOOLG
C
C Calculate result for first interpretation.
C
I2 = (INT (ILARGE) - INT (ISMALL)) * ITWO + ITOOLG
C
C Calculate result for second interpretation.
C
ITMP = ILARGE - ISMALL
I3 = (INT (ITMP)) * ITWO + ITOOLG
C
C Calculate result for third interpretation.
C
I4 = (ILARGE - ISMALL) * ITWO + ITOOLG
C
C Print results.
C
PRINT *, ’*ILARGE=’, ILARGE
PRINT *, ’*ITWO=’, ITWO
PRINT *, ’*ITOOLG=’, ITOOLG
PRINT *, ’ISMALL=’, ISMALL
PRINT *, ’I1=’, I1
PRINT *, ’I2=’, I2
PRINT *, ’I3=’, I3
PRINT *, ’I4=’, I4
PRINT *

L2 = (I1 .EQ. I2)

L3 = (I1 .EQ. I3)

L4 = (I1 .EQ. I4)

IF (L2 .AND. .NOT.L3 .AND. .NOT.L4) THEN
PRINT *, ’Interp 1: IDIM(I*2,I%2) => IDIM(INT(I*2),INT(I*2))’
STOP

END IF

IF (L3 .AND. .NOT.L2 .AND. .NOT.L4) THEN
PRINT *, ’Interp 2: IDIM(I*2,I%2) => INT(DIM(I*2,I%*2))~’
STOP

END TIF

IF (L4 .AND. .NOT.L2 .AND. .NOT.L3) THEN
PRINT *, ’Interp 3: IDIM(I*2,I%2) => DIM(I*2,I*2)’

110 Using and Porting GNU Fortran

STOP
END IF
PRINT *, ’Results need careful analysis.’
END

No future version of the GNU Fortran language will likely permit specific intrinsic invo-
cations with wrong-typed arguments (such as IDIM in the above example), since it has been
determined that disagreements exist among many production compilers on the interpreta-
tion of such invocations. These disagreements strongly suggest that Fortran programmers,
and certainly existing Fortran programs, disagree about the meaning of such invocations.

The first version of JCB002 didn’t accommodate some compilers’ treatment of
‘INT(I1-I2)’ where ‘I1’ and ‘I2’ are INTEGER*2. In such a case, these compilers
apparently convert both operands to INTEGER*4 and then do an INTEGER*4 subtraction,
instead of doing an INTEGER#*2 subtraction on the original values in ‘I1’ and ‘I2’.

However, the results of the careful analyses done on the outputs of programs compiled
by these various compilers show that they all implement either ‘Interp 1’ or ‘Interp 2’
above.

Specifically, it is believed that the new version of JCBO02 above will confirm that:

e Digital Semiconductor (“DEC”) Alpha OSF /1, HP-UX 10.0.1, AIX 3.2.5 £77 compilers
all implement ‘Interp 1’.

e JRIX 5.3 £77 compiler implements ‘Interp 2.

e Solaris 2.5, SunOS 4.1.3, DECstation ULTRIX 4.3, and IRIX 6.1 £77 compilers all
implement ‘Interp 3’.

If you get different results than the above for the stated compilers, or have results for
other compilers that might be worth adding to the above list, please let us know the details
(compiler product, version, machine, results, and so on).

8.11.5 REAL() and AIMAG() of Complex

The GNU Fortran language disallows REAL (expr) and AIMAG(expr), where expr is any
COMPLEX type other than COMPLEX (KIND=1), except when they are used in the following
way:

REAL (REAL (expr))
REAL (AIMAG (expr))

The above forms explicitly specify that the desired effect is to convert the real or imag-
inary part of expr, which might be some REAL type other than REAL(KIND=1), to type
REAL (KIND=1), and have that serve as the value of the expression.

The GNU Fortran language offers clearly named intrinsics to extract the real and imag-
inary parts of a complex entity without any conversion:
REALPART (expr)
IMAGPART (expr)
To express the above using typical extended FORTRAN 77, use the following constructs
(when expr is COMPLEX (KIND=2)):

DBLE (expr)
DIMAG (expr)

Chapter 8: The GNU Fortran Language 111

The FORTRAN 77 language offers no way to explicitly specify the real and imaginary
parts of a complex expression of arbitrary type, apparently as a result of requiring support
for only one COMPLEX type (COMPLEX (KIND=1)). The concepts of converting an expression
to type REAL(KIND=1) and of extracting the real part of a complex expression were thus
“smooshed” by FORTRAN 77 into a single intrinsic, since they happened to have the exact
same effect in that language (due to having only one COMPLEX type).

Note: When ‘~££90’ is in effect, g77 treats ‘REAL (expr)’, where expr is of type COMPLEX,
as ‘REALPART (expr)’, whereas with ‘-fugly-complex -fno-f90’ in effect, it is treated as
‘REAL (REALPART (expr))’.

See Section 9.9.3 [Ugly Complex Part Extraction], page 197, for more information.

8.11.6 CMPLX() of DOUBLE PRECISION

In accordance with Fortran 90 and at least some (perhaps all) other compilers,
the GNU Fortran language defines CMPLX() as always returning a result that is type
COMPLEX (KIND=1).

This means ‘CMPLX(D1,D2)’, where ‘D1’ and ‘D2’ are REAL (KIND=2) (DOUBLE PRECISION),
is treated as:

CMPLX (SNGL(D1), SNGL(D2))

(It was necessary for Fortran 90 to specify this behavior for DOUBLE PRECISION argu-
ments, since that is the behavior mandated by FORTRAN 77.)

The GNU Fortran language also provides the DCMPLX() intrinsic, which is provided
by some FORTRAN 77 compilers to construct a DOUBLE COMPLEX entity from of DOUBLE
PRECISION operands. However, this solution does not scale well when more COMPLEX types
(having various precisions and ranges) are offered by Fortran implementations.

Fortran 90 extends the CMPLX () intrinsic by adding an extra argument used to specify
the desired kind of complex result. However, this solution is somewhat awkward to use,
and g77 currently does not support it.

The GNU Fortran language provides a simple way to build a complex value out of two
numbers, with the precise type of the value determined by the types of the two numbers
(via the usual type-promotion mechanism):

COMPLEX (real, imag)

When real and imag are the same REAL types, COMPLEX () performs no conversion other
than to put them together to form a complex result of the same (complex version of real)

type.

See Section 8.11.9.44 [Complex Intrinsic], page 124, for more information.

8.11.7 MIL-STD 1753 Support

The GNU Fortran language includes the MIL-STD 1753 intrinsics BTEST, IAND, IBCLR,
IBITS, IBSET, IEOR, IOR, ISHFT, ISHFTC, MVBITS, and NOT.

112 Using and Porting GNU Fortran

8.11.8 £77/f2c Intrinsics

The bit-manipulation intrinsics supported by traditional £77 and by f2c are available
in the GNU Fortran language. These include AND, LSHIFT, OR, RSHIFT, and XOR.

Also supported are the intrinsics CDABS, CDCOS, CDEXP, CDLOG, CDSIN, CDSQRT, DCMPLX,
DCONJG, DFLOAT, DIMAG, DREAL, and IMAG, ZABS, ZCOS, ZEXP, ZLOG, ZSIN, and ZSQRT.

8.11.9 Table of Intrinsic Functions

(Corresponds to Section 15.10 of ANSI X3.9-1978 FORTRAN 77.)

The GNU Fortran language adds various functions, subroutines, types, and arguments
to the set of intrinsic functions in ANSI FORTRAN 77. The complete set of intrinsics
supported by the GNU Fortran language is described below.

Note that a name is not treated as that of an intrinsic if it is specified in an EXTERNAL
statement in the same program unit; if a command-line option is used to disable the groups
to which the intrinsic belongs; or if the intrinsic is not named in an INTRINSIC statement
and a command-line option is used to hide the groups to which the intrinsic belongs.

So, it is recommended that any reference in a program unit to an intrinsic procedure
that is not a standard FORTRAN 77 intrinsic be accompanied by an appropriate INTRINSIC
statement in that program unit. This sort of defensive programming makes it more likely
that an implementation will issue a diagnostic rather than generate incorrect code for such
a reference.

The terminology used below is based on that of the Fortran 90 standard, so that the
text may be more concise and accurate:

e (OPTIONAL means the argument may be omitted.

e ‘A-1, A-2, ..., A-n’ means more than one argument (generally named ‘A’) may be
specified.

e ‘scalar’ means the argument must not be an array (must be a variable or array element,
or perhaps a constant if expressions are permitted).

e ‘DIMENSION(4)’ means the argument must be an array having 4 elements.

e INTENT(IN) means the argument must be an expression (such as a constant or a variable
that is defined upon invocation of the intrinsic).

e INTENT(OUT) means the argument must be definable by the invocation of the intrinsic
(that is, must not be a constant nor an expression involving operators other than array
reference and substring reference).

e INTENT(INOUT) means the argument must be defined prior to, and definable by,
invocation of the intrinsic (a combination of the requirements of INTENT(IN) and
INTENT (OUT).

e See Section 8.7.1.3 [Kind Notation|, page 98, for an explanation of KIND.

8.11.9.1 Abort Intrinsic

CALL Abort()

Intrinsic groups: unix.

Chapter 8: The GNU Fortran Language 113

Description:

Prints a message and potentially causes a core dump via abort(3).

8.11.9.2 Abs Intrinsic

Abs(A)

Abs: INTEGER or REAL function. The exact type depends on that of argument A—if A
is COMPLEX, this function’s type is REAL with the same ‘KIND=’ value as the type of A.
Otherwise, this function’s type is the same as that of A.

A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the absolute value of A.
If A is type COMPLEX, the absolute value is computed as:
SQRT (REALPART (A) **2+IMAGPART (A) **2)
Otherwise, it is computed by negating A if it is negative, or returning A.

See Section 8.11.9.227 [Sign Intrinsic], page 173, for how to explicitly compute the posi-
tive or negative form of the absolute value of an expression.

8.11.9.3 Access Intrinsic

Access(Name, Mode)
Access: INTEGER(KIND=1) function.
Name: CHARACTER; scalar; INTENT(IN).
Mode: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Checks file Name for accessibility in the mode specified by Mode and returns 0 if the
file is accessible in that mode, otherwise an error code if the file is inaccessible or Mode
is invalid. See access(2). A null character (‘CHAR(0)’) marks the end of the name in
Name—otherwise, trailing blanks in Name are ignored. Mode may be a concatenation of
any of the following characters:

‘r’ Read permission
‘W Write permission
‘x’ Execute permission

‘SPC’ Existence

114 Using and Porting GNU Fortran

8.11.9.4 AChar Intrinsic

AChar (I)
AChar: CHARACTER*1 function.
I: INTEGER, scalar; INTENT(IN).
Intrinsic groups: £2c, £90.
Description:
Returns the ASCII character corresponding to the code specified by I.
See Section 8.11.9.131 [IAChar Intrinsic|, page 148, for the inverse of this function.

See Section 8.11.9.39 [Char Intrinsic], page 122, for the function corresponding to the
system’s native character set.

8.11.9.5 ACos Intrinsic

ACos (X)
ACos: REAL function, the ‘KIND=" value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the arc-cosine (inverse cosine) of X in radians.

See Section 8.11.9.46 [Cos Intrinsic], page 125, for the inverse of this function.

8.11.9.6 AdjustL Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL AdjustL’ to use this name for an external procedure.

8.11.9.7 AdjustR Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL AdjustR’ to use this name for an external procedure.

8.11.9.8 Almag Intrinsic

ATmag(Z)

Almag: REAL function. This intrinsic is valid when argument Z is COMPLEX (KIND=1). When
Z is any other COMPLEX type, this intrinsic is valid only when used as the argument to
REAL (), as explained below.

Z: COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the (possibly converted) imaginary part of Z.

Use of AIMAG() with an argument of a type other than COMPLEX (KIND=1) is restricted
to the following case:

Chapter 8: The GNU Fortran Language 115

REAL (AIMAG(Z))
This expression converts the imaginary part of Z to REAL(KIND=1).
See Section 8.11.5 [REAL() and AIMAG() of Complex], page 110, for more information.

8.11.9.9 Alnt Intrinsic

AInt (A)
Alnt: REAL function, the ‘KIND=’ value of the type being that of argument A.
A: REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns A with the fractional portion of its magnitude truncated and its sign preserved.
(Also called “truncation towards zero”.)

See Section 8.11.9.21 [ANInt Intrinsic], page 118, for how to round to nearest whole
number.

See Section 8.11.9.148 [Int Intrinsic], page 153, for how to truncate and then convert
number to INTEGER.

8.11.9.10 Alarm Intrinsic

CALL Alarm(Seconds, Handler, Status)
Seconds: INTEGER; scalar; INTENT(IN).

Handler: Signal handler (INTEGER FUNCTION or SUBROUTINE) or dummy/global
INTEGER (KIND=1) scalar.

Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Causes external subroutine Handler to be executed after a delay of Seconds seconds
by using alarm(1) to set up a signal and signal(2) to catch it. If Status is supplied,
it will be returned with the number of seconds remaining until any previously scheduled
alarm was due to be delivered, or zero if there was no previously scheduled alarm. See
Section 8.11.9.228 [Signal Intrinsic (subroutine)], page 173.

8.11.9.11 All Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL A11’ to use this name for an external procedure.

8.11.9.12 Allocated Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Allocated’ to use this name for an external procedure.

116 Using and Porting GNU Fortran

8.11.9.13 ALog Intrinsic

ALog(X)
ALog: REAL(KIND=1) function.
X: REAL(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of LOG() that is specific to one type for X. See Section 8.11.9.170 [Log
Intrinsic], page 160.

8.11.9.14 ALogl0 Intrinsic

ALog10(X)
ALogl10: REAL(XIND=1) function.
X: REAL(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of LOG10() that is specific to one type for X. See Section 8.11.9.171 [Logl0
Intrinsic], page 160.

8.11.9.15 AMax0 Intrinsic

AMax0(A-1, A-2, ..., A-n)
AMax0: REAL(KIND=1) function.
A: INTEGER(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MAX () that is specific to one type for A and a different return type. See
Section 8.11.9.179 [Max Intrinsic|, page 163.

8.11.9.16 AMax1 Intrinsic

AMax1(A-1, A-2, ..., A-n)
AMax1: REAL(KIND=1) function.
A: REAL(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MAX() that is specific to one type for A. See Section 8.11.9.179 [Max
Intrinsic|, page 163.

Chapter 8: The GNU Fortran Language 117

8.11.9.17 AMinO Intrinsic

AMinO(A-1, A-2, ..., A-n)
AMin0O: REAL(KIND=1) function.
A: INTEGER(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MIN() that is specific to one type for A and a different return type. See
Section 8.11.9.188 [Min Intrinsic|, page 165.

8.11.9.18 AMinl Intrinsic

AMin1(A-1, A-2, ..., A-n)
AMinl: REAL(KIND=1) function.
A: REAL(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MIN() that is specific to one type for A. See Section 8.11.9.188 [Min
Intrinsic], page 165.

8.11.9.19 AMod Intrinsic

AMod (A, P)
AMod: REAL(KIND=1) function.
A: REAL (KIND=1); scalar; INTENT(IN).
P: REAL (KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MOD() that is specific to one type for A. See Section 8.11.9.194 [Mod
Intrinsic|, page 166.

8.11.9.20 And Intrinsic

And (I, J)

And: INTEGER or LOGICAL function, the exact type being the result of cross-promoting the
types of all the arguments.

I: INTEGER or LOGICAL; scalar; INTENT(IN).
J: INTEGER or LOGICAL; scalar; INTENT(IN).
Intrinsic groups: f2c.

Description:

Returns value resulting from boolean AND of pair of bits in each of I and J.

118 Using and Porting GNU Fortran

8.11.9.21 ANInt Intrinsic

ANInt (A)
ANInt: REAL function, the ‘KIND=" value of the type being that of argument A.
A: REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns A with the fractional portion of its magnitude eliminated by rounding to the
nearest whole number and with its sign preserved.

A fractional portion exactly equal to ‘.5’ is rounded to the whole number that is larger
in magnitude. (Also called “Fortran round”.)

See Section 8.11.9.9 [AInt Intrinsic|, page 115, for how to truncate to whole number.

See Section 8.11.9.198 [NInt Intrinsic|, page 167, for how to round and then convert
number to INTEGER.

8.11.9.22 Any Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Any’ to use this name for an external procedure.

8.11.9.23 ASin Intrinsic

ASin(X)
ASin: REAL function, the ‘KIND=" value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the arc-sine (inverse sine) of X in radians.

See Section 8.11.9.229 [Sin Intrinsic], page 174, for the inverse of this function.

8.11.9.24 Associated Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Associated’ to use this name for an external procedure.

8.11.9.25 ATan Intrinsic

ATan(X)
ATan: REAL function, the ‘KIND=" value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the arc-tangent (inverse tangent) of X in radians.

See Section 8.11.9.243 [Tan Intrinsic|, page 179, for the inverse of this function.

Chapter 8: The GNU Fortran Language 119

8.11.9.26 ATan2 Intrinsic

ATan2(Y, X)

ATan2: REAL function, the exact type being the result of cross-promoting the types of all
the arguments.

Y: REAL; scalar; INTENT(IN).
X: REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the arc-tangent (inverse tangent) of the complex number (Y, X) in radians.

See Section 8.11.9.243 [Tan Intrinsic], page 179, for the inverse of this function.

8.11.9.27 BesJO Intrinsic

BesJO(X)
BesJO: REAL function, the ‘KIND=" value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Calculates the Bessel function of the first kind of order 0 of X. See bessel (3m), on whose
implementation the function depends.

8.11.9.28 BesJ1 Intrinsic

BesJ1(X)
BesJ1: REAL function, the ‘KIND=" value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Calculates the Bessel function of the first kind of order 1 of X. See bessel (3m), on whose
implementation the function depends.

8.11.9.29 BesJN Intrinsic

BesJN(N, X)
BesJN: REAL function, the ‘KIND=" value of the type being that of argument X.
N: INTEGER not wider than the default kind; scalar; INTENT(IN).
X: REAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Calculates the Bessel function of the first kind of order N of X. See bessel(3m), on
whose implementation the function depends.

120 Using and Porting GNU Fortran

8.11.9.30 BesYO0 Intrinsic

BesY0(X)
BesYO0: REAL function, the ‘KIND=’ value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Calculates the Bessel function of the second kind of order 0 of X. See bessel(3m), on
whose implementation the function depends.

8.11.9.31 BesY1 Intrinsic

BesY1(X)
BesY1: REAL function, the ‘KIND=" value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Calculates the Bessel function of the second kind of order 1 of X. See bessel(3m), on
whose implementation the function depends.

8.11.9.32 BesYN Intrinsic

BesYN(N, X)
BesYN: REAL function, the ‘KIND=" value of the type being that of argument X.
N: INTEGER not wider than the default kind; scalar; INTENT(IN).
X: REAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Calculates the Bessel function of the second kind of order N of X. See bessel(3m), on
whose implementation the function depends.

8.11.9.33 Bit_Size Intrinsic

Bit_Size(I)
Bit_Size: INTEGER function, the ‘KIND=" value of the type being that of argument I.
I: INTEGER; scalar.
Intrinsic groups: £90.
Description:

Returns the number of bits (integer precision plus sign bit) represented by the type for
L

See Section 8.11.9.34 [BTest Intrinsic|, page 121, for how to test the value of a bit in a
variable or array.

See Section 8.11.9.136 [IBSet Intrinsic|, page 149, for how to set a bit in a variable to 1.
See Section 8.11.9.134 [IBClr Intrinsic|, page 148, for how to set a bit in a variable to 0.

Chapter 8: The GNU Fortran Language 121

8.11.9.34 BTest Intrinsic

BTest (I, Pos)
BTest: LOGICAL(KIND=1) function.
I: INTEGER, scalar; INTENT(IN).
Pos: INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, £90, vxt.
Description:
Returns .TRUE. if bit Pos in I is 1, .FALSE. otherwise.

(Bit 0 is the low-order (rightmost) bit, adding the value 2°, or 1, to the number if set to
1; bit 1 is the next-higher-order bit, adding 2!, or 2; bit 2 adds 22, or 4; and so on.)

See Section 8.11.9.33 [Bit_Size Intrinsic|, page 120, for how to obtain the number of bits
in a type. The leftmost bit of I is ‘BIT_SIZE(I-1)’.

8.11.9.35 CAbs Intrinsic

CAbs (A)
CAbs: REAL(KIND=1) function.
A: COMPLEX (KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of ABS() that is specific to one type for A. See Section 8.11.9.2 [Abs
Intrinsic], page 113.

8.11.9.36 CCos Intrinsic

CCos (X)
CCos: COMPLEX(KIND=1) function.
X: COMPLEX (KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of COS() that is specific to one type for X. See Section 8.11.9.46 [Cos
Intrinsic|, page 125.

8.11.9.37 Ceiling Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Ceiling’ to use this name for an external procedure.

122 Using and Porting GNU Fortran

8.11.9.38 CExp Intrinsic

CExp (X)
CExp: COMPLEX (KIND=1) function.
X: COMPLEX (KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of EXP() that is specific to one type for X. See Section 8.11.9.99 [Exp
Intrinsic], page 138.

8.11.9.39 Char Intrinsic

Char (I)
Char: CHARACTER*1 function.
I: INTEGER, scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the character corresponding to the code specified by I, using the system’s native
character set.

Because the system’s native character set is used, the correspondence between character
and their codes is not necessarily the same between GNU Fortran implementations.

Note that no intrinsic exists to convert a numerical value to a printable character string.
For example, there is no intrinsic that, given an INTEGER or REAL argument with the value
‘154’, returns the CHARACTER result ‘>1547°.

Instead, you can use internal-file I/O to do this kind of conversion. For example:

INTEGER VALUE

CHARACTER*10 STRING

VALUE = 154

WRITE (STRING, ’(I10)’), VALUE
PRINT *, STRING

END

The above program, when run, prints:
154
See Section 8.11.9.137 [IChar Intrinsic], page 149, for the inverse of the CHAR function.

See Section 8.11.9.4 [AChar Intrinsic], page 114, for the function corresponding to the
ASCII character set.

8.11.9.40 ChDir Intrinsic (subroutine)

CALL ChDir(Dir, Status)
Dir: CHARACTER, scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

Intrinsic groups: unix.

Chapter 8: The GNU Fortran Language 123

Description:

Sets the current working directory to be Dir. If the Status argument is supplied, it
contains 0 on success or a non-zero error code otherwise upon return. See chdir(3).

Caution: Using this routine during I/O to a unit connected with a non-absolute file
name can cause subsequent I/0O on such a unit to fail because the I/O library might reopen
files by name.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.17 [ChDir
Intrinsic (function)], page 210.

8.11.9.41 ChMod Intrinsic (subroutine)

CALL ChMod(Name, Mode, Status)
Name: CHARACTER; scalar; INTENT(IN).
Mode: CHARACTER; scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Changes the access mode of file Name according to the specification Mode, which is
given in the format of chmod(1). A null character (‘CHAR(0)’) marks the end of the name in
Name—otherwise, trailing blanks in Name are ignored. Currently, Name must not contain
the single quote character.

If the Status argument is supplied, it contains 0 on success or a non-zero error code upon
return.

Note that this currently works by actually invoking /bin/chmod (or the chmod found
when the library was configured) and so might fail in some circumstances and will, anyway,
be slow.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.18 [ChMod
Intrinsic (function)], page 211.

8.11.9.42 CLog Intrinsic

CLog (X)
CLog: COMPLEX (KIND=1) function.
X: COMPLEX (KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of LOG() that is specific to one type for X. See Section 8.11.9.170 [Log
Intrinsic|, page 160.

124 Using and Porting GNU Fortran

8.11.9.43 Cmplx Intrinsic

Cmplx (X, Y)
Cmplx: COMPLEX(KIND=1) function.
X: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Y: INTEGER or REAL; OPTIONAL (must be omitted if X is COMPLEX); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

If X is not type COMPLEX, constructs a value of type COMPLEX (KIND=1) from the real and
imaginary values specified by X and Y, respectively. If Y is omitted, ‘0.’ is assumed.

If X is type COMPLEX, converts it to type COMPLEX (KIND=1).

See Section 8.11.9.44 [Complex Intrinsic], page 124, for information on easily constructing
a COMPLEX value of arbitrary precision from REAL arguments.

8.11.9.44 Complex Intrinsic

Complex(Real, Imag)

Complex: COMPLEX function, the exact type being the result of cross-promoting the types
of all the arguments.

Real: INTEGER or REAL; scalar; INTENT(IN).
Imag: INTEGER or REAL; scalar; INTENT(IN).
Intrinsic groups: gnu.

Description:

Returns a COMPLEX value that has ‘Real’ and ‘Imag’ as its real and imaginary parts,
respectively.

If Real and Imag are the same type, and that type is not INTEGER, no data conversion
is performed, and the type of the resulting value has the same kind value as the types of
Real and Imag.

If Real and Imag are not the same type, the usual type-promotion rules are applied to
both, converting either or both to the appropriate REAL type. The type of the resulting
value has the same kind value as the type to which both Real and Imag were converted, in
this case.

If Real and Imag are both INTEGER, they are both converted to REAL(KIND=1), and the
result of the COMPLEX () invocation is type COMPLEX (KIND=1).

Note: The way to do this in standard Fortran 90 is too hairy to describe here, but it is
important to note that ‘CMPLX(D1,D2)’ returns a COMPLEX (KIND=1) result even if ‘D1’ and
‘D2’ are type REAL(KIND=2). Hence the availability of COMPLEX () in GNU Fortran.

8.11.9.45 Conjg Intrinsic

Conjg(Z)
Conjg: COMPLEX function, the ‘KIND=" value of the type being that of argument Z.
Z: COMPLEX; scalar; INTENT(IN).

Chapter 8: The GNU Fortran Language 125

Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the complex conjugate:
COMPLEX(REALPART (Z), -IMAGPART(Z))

8.11.9.46 Cos Intrinsic

Cos (X)
Cos: REAL or COMPLEX function, the exact type being that of argument X.
X: REAL or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the cosine of X, an angle measured in radians.

See Section 8.11.9.5 [ACos Intrinsic|, page 114, for the inverse of this function.

8.11.9.47 CosH Intrinsic

CosH(X)
CosH: REAL function, the ‘KIND=" value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the hyperbolic cosine of X.

8.11.9.48 Count Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Count’ to use this name for an external procedure.

8.11.9.49 CPU_Time Intrinsic

CALL CPU_Time (Seconds)
Seconds: REAL; scalar; INTENT(OUT).
Intrinsic groups: £90.

Description:

Returns in Seconds the current value of the system time. This implementation of the
Fortran 95 intrinsic is just an alias for second See Section 8.11.9.221 [Second Intrinsic
(subroutine)], page 172.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

126 Using and Porting GNU Fortran

8.11.9.50 CShift Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL CShift’ to use this name for an external procedure.

8.11.9.51 CSin Intrinsic

CSin(X)
CSin: COMPLEX (KIND=1) function.
X: COMPLEX (KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of SIN() that is specific to one type for X. See Section 8.11.9.229 [Sin
Intrinsic], page 174.

8.11.9.52 CSqgRt Intrinsic

CSqgRt (X)
CSqRt: COMPLEX (KIND=1) function.
X: COMPLEX (KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of SQRT() that is specific to one type for X. See Section 8.11.9.235 [SqRt
Intrinsic], page 175.

8.11.9.53 CTime Intrinsic (subroutine)

CALL CTime(STime, Result)
STime: INTEGER; scalar; INTENT(IN).
Result: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Converts STime, a system time value, such as returned by TIME8(), to a string of the
form ‘Sat Aug 19 18:13:14 1995’, and returns that string in Result.

See Section 8.11.9.246 [Time8 Intrinsic|, page 179.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine.

For information on other intrinsics with the same name: See Section 8.11.9.54 [CTime
Intrinsic (function)], page 127.

Chapter 8: The GNU Fortran Language 127

8.11.9.54 CTime Intrinsic (function)

CTime (STime)
CTime: CHARACTER* (*) function.
STime: INTEGER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Converts STime, a system time value, such as returned by TIMES(), to a string of the
form ‘Sat Aug 19 18:13:14 1995, and returns that string as the function value.

See Section 8.11.9.246 [Time8 Intrinsic], page 179.

For information on other intrinsics with the same name: See Section 8.11.9.53 [CTime
Intrinsic (subroutine)], page 126.

8.11.9.55 DADbs Intrinsic

DAbs (A)
DAbs: REAL(KIND=2) function.
A: REAL (KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of ABS() that is specific to one type for A. See Section 8.11.9.2 [Abs
Intrinsic], page 113.

8.11.9.56 DACos Intrinsic

DACos (X)
DACos: REAL(KIND=2) function.
X: REAL (KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of ACOS() that is specific to one type for X. See Section 8.11.9.5 [ACos
Intrinsic|, page 114.

8.11.9.57 DASIin Intrinsic

DASin(X)
DASin: REAL(KIND=2) function.
X: REAL (KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of ASIN() that is specific to one type for X. See Section 8.11.9.23 [ASin
Intrinsic|, page 118.

128 Using and Porting GNU Fortran

8.11.9.58 DATan Intrinsic

DATan (X)
DATan: REAL(KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of ATAN() that is specific to one type for X. See Section 8.11.9.25 [ATan
Intrinsic|, page 118.

8.11.9.59 DATan2 Intrinsic

DATan2(Y, X)
DATan2: REAL(KIND=2) function.
Y: REAL(KIND=2); scalar; INTENT(IN).
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of ATAN2() that is specific to one type for Y and X. See Section 8.11.9.26
[ATan2 Intrinsic], page 119.

8.11.9.60 Date_and_Time Intrinsic

CALL Date_and_Time(Date, Time, Zone, Values)

Date: CHARACTER; scalar; INTENT(OUT).
Time: CHARACTER; OPTIONAL; scalar; INTENT(OUT).
Zone: CHARACTER; OPTIONAL; scalar; INTENT(OUT).
Values: INTEGER(KIND=1); OPTIONAL; DIMENSION(8); INTENT(OUT).
Intrinsic groups: £90.
Description:

Returns:

Date The date in the form ccyymmdd: century, year, month and day;
Time The time in the form ‘hhmmss.ss’: hours, minutes, seconds and milliseconds;

Zone The difference between local time and UTC (GMT) in the form Shhmm: sign,
hours and minutes, e.g. ‘~0500’ (winter in New York);

Values The year, month of the year, day of the month, time difference in minutes
from UTC, hour of the day, minutes of the hour, seconds of the minute, and
milliseconds of the second in successive values of the array.

Programs making use of this intrinsic might not be Year 10000 (Y10K) compliant. For
example, the date might appear, to such programs, to wrap around (change from a larger
value to a smaller one) as of the Year 10000.

On systems where a millisecond timer isn’t available, the millisecond value is returned
as zero.

Chapter 8: The GNU Fortran Language 129

8.11.9.61 DbesJO Intrinsic

DbesJO(X)
DbesJ0: REAL(KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of BESJO() that is specific to one type for X. See Section 8.11.9.27 [BesJO
Intrinsic], page 119.

8.11.9.62 DbesJ1 Intrinsic

DbesJ1(X)
DbesJ1: REAL(KIND=2) function.
X: REAL (KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of BESJ1() that is specific to one type for X. See Section 8.11.9.28 [BesJ1
Intrinsic], page 119.

8.11.9.63 DbesJN Intrinsic

DbesJN(N, X)
DbesJN: REAL(KIND=2) function.
N: INTEGER not wider than the default kind; scalar; INTENT(IN).
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of BESIN() that is specific to one type for X. See Section 8.11.9.29 [BesJN
Intrinsic], page 119.

8.11.9.64 DbesYO0 Intrinsic

DbesY0 (X)
DbesY0: REAL(KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of BESYO() that is specific to one type for X. See Section 8.11.9.30 [BesY0
Intrinsic|, page 120.

130 Using and Porting GNU Fortran

8.11.9.65 DbesY1 Intrinsic

DbesY1(X)
DbesY1: REAL(KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of BESY1() that is specific to one type for X. See Section 8.11.9.31 [BesY1
Intrinsic], page 120.

8.11.9.66 DbesYN Intrinsic

DbesYN(N, X)
DbesYN: REAL (KIND=2) function.
N: INTEGER not wider than the default kind; scalar; INTENT(IN).
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of BESYN() that is specific to one type for X. See Section 8.11.9.32 [BesYN
Intrinsic], page 120.

8.11.9.67 Dble Intrinsic

Dble(A)
Dble: REAL(KIND=2) function.
A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns A converted to double precision (REAL(KIND=2)). If A is COMPLEX, the real part
of A is used for the conversion and the imaginary part disregarded.

See Section 8.11.9.232 [Sngl Intrinsic|, page 175, for the function that converts to single
precision.
See Section 8.11.9.148 [Int Intrinsic, page 153, for the function that converts to INTEGER.

See Section 8.11.9.44 [Complex Intrinsic|, page 124, for the function that converts to
COMPLEX.

8.11.9.68 DCos Intrinsic

DCos (X)
DCos: REAL(KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of COS() that is specific to one type for X. See Section 8.11.9.46 [Cos
Intrinsic|, page 125.

Chapter 8: The GNU Fortran Language 131

8.11.9.69 DCosH Intrinsic

DCosH(X)
DCosH: REAL (KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of COSH() that is specific to one type for X. See Section 8.11.9.47 [CosH
Intrinsic], page 125.

8.11.9.70 DDiM Intrinsic

DDiM(X, Y)
DDiM: REAL(KIND=2) function.
X: REAL (KIND=2); scalar; INTENT(IN).
Y': REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of DIM() that is specific to one type for X and Y. See Section 8.11.9.75
[DiM Intrinsic|, page 132.

8.11.9.71 DErF Intrinsic

DErF(X)
DErF: REAL (KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of ERF() that is specific to one type for X. See Section 8.11.9.94 [ErF
Intrinsic], page 136.

8.11.9.72 DErFC Intrinsic

DErFC(X)
DErFC: REAL (KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of ERFC() that is specific to one type for X. See Section 8.11.9.95 [ErFC
Intrinsic|, page 137.

132 Using and Porting GNU Fortran

8.11.9.73 DExp Intrinsic

DExp (X)
DExp: REAL(XIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of EXP() that is specific to one type for X. See Section 8.11.9.99 [Exp
Intrinsic], page 138.

8.11.9.74 Digits Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Digits’ to use this name for an external procedure.

8.11.9.75 DiM Intrinsic

DiM(X, Y)
DiM: INTEGER or REAL function, the exact type being the result of cross-promoting the
types of all the arguments.

X: INTEGER or REAL; scalar; INTENT(IN).
Y: INTEGER or REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns ‘X-Y”’ if X is greater than Y; otherwise returns zero.

8.11.9.76 DInt Intrinsic

DInt (A)
DInt: REAL(KIND=2) function.
A: REAL (KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of AINT() that is specific to one type for A. See Section 8.11.9.9 [Alnt
Intrinsic], page 115.

8.11.9.77 DLog Intrinsic

DLog(X)
DLog: REAL(KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of LOG() that is specific to one type for X. See Section 8.11.9.170 [Log
Intrinsic|, page 160.

Chapter 8: The GNU Fortran Language 133

8.11.9.78 DLogl0 Intrinsic

DLog10(X)
DLog10: REAL(KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of L0G10() that is specific to one type for X. See Section 8.11.9.171 [Logl0
Intrinsic], page 160.

8.11.9.79 DMax1 Intrinsic

DMax1(A-1, A-2, ..., A-n)
DMax1: REAL (KIND=2) function.
A: REAL (KIND=2); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MAX() that is specific to one type for A. See Section 8.11.9.179 [Max
Intrinsic], page 163.

8.11.9.80 DMinl Intrinsic

DMin1(A-1, A-2, ..., A-n)
DMin1: REAL(KIND=2) function.
A: REAL(KIND=2); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MIN() that is specific to one type for A. See Section 8.11.9.188 [Min
Intrinsic, page 165.

8.11.9.81 DMod Intrinsic

DMod (A, P)
DMod: REAL(KIND=2) function.
A: REAL (KIND=2); scalar; INTENT(IN).
P: REAL (KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MOD() that is specific to one type for A. See Section 8.11.9.194 [Mod
Intrinsic|, page 166.

134 Using and Porting GNU Fortran

8.11.9.82 DNInt Intrinsic

DNInt (A)
DNInt: REAL(KIND=2) function.
A: REAL (KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of ANINT() that is specific to one type for A. See Section 8.11.9.21 [ANInt
Intrinsic|, page 118.

8.11.9.83 Dot_Product Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Dot_Product’ to use this name for an external procedure.

8.11.9.84 DProd Intrinsic

DProd(X, Y)
DProd: REAL(XIND=2) function.
X: REAL(KIND=1); scalar; INTENT(IN).
Y: REAL(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns ‘DBLE (X)*DBLE(Y)’.

8.11.9.85 DSign Intrinsic

DSign(A, B)
DSign: REAL(KIND=2) function.
A: REAL (KIND=2); scalar; INTENT(IN).
B: REAL (KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of SIGN() that is specific to one type for A and B. See Section 8.11.9.227
[Sign Intrinsic|, page 173.

8.11.9.86 DSin Intrinsic

DSin(X)
DSin: REAL(KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of SIN() that is specific to one type for X. See Section 8.11.9.229 [Sin
Intrinsic|, page 174.

Chapter 8: The GNU Fortran Language 135

8.11.9.87 DSinH Intrinsic

DSinH(X)
DSinH: REAL (KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of SINH() that is specific to one type for X. See Section 8.11.9.230 [SinH
Intrinsic|, page 174.

8.11.9.88 DSqRt Intrinsic

DSqRt (X)
DSqRt: REAL(KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of SQRT() that is specific to one type for X. See Section 8.11.9.235 [SqRt
Intrinsic], page 175.

8.11.9.89 DTan Intrinsic

DTan (X)
DTan: REAL(KIND=2) function.
X: REAL (KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of TAN() that is specific to one type for X. See Section 8.11.9.243 [Tan
Intrinsic|, page 179.

8.11.9.90 DTanH Intrinsic

DTanH (X)
DTanH: REAL(KIND=2) function.
X: REAL(KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of TANH() that is specific to one type for X. See Section 8.11.9.244 [TanH
Intrinsic|, page 179.

136 Using and Porting GNU Fortran

8.11.9.91 DTime Intrinsic (subroutine)

CALL DTime(TArray, Result)
TArray: REAL(KIND=1); DIMENSION(2); INTENT(OUT).
Result: REAL(KIND=1); scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Initially, return the number of seconds of runtime since the start of the process’s execu-
tion in Result, and the user and system components of this in ‘TArray (1)’ and ‘TArray (2)’
respectively. The value of Result is equal to ‘TArray (1) + TArray(2)’.

Subsequent invocations of ‘DTIME ()’ set values based on accumulations since the previous
invocation.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine.

For information on other intrinsics with the same name: See Section 10.5.2.36 [DTime
Intrinsic (function)], page 214.

8.11.9.92 EOShift Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL EOShift’ to use this name for an external procedure.

8.11.9.93 Epsilon Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Epsilon’ to use this name for an external procedure.

8.11.9.94 ErF Intrinsic

ErF(X)
ErF: REAL function, the ‘KIND=" value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns the error function of X. See erf (3m), which provides the implementation.

Chapter 8: The GNU Fortran Language 137

8.11.9.95 ErFC Intrinsic

ErFC(X)
ErFC: REAL function, the ‘KIND=" value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns the complementary error function of X: ‘ERFC(R) = 1 - ERF(R)’ (except that
the result might be more accurate than explicitly evaluating that formulae would give). See
erfc(3m), which provides the implementation.

8.11.9.96 ETime Intrinsic (subroutine)

CALL ETime(TArray, Result)
TArray: REAL(KIND=1); DIMENSION(2); INTENT(OUT).
Result: REAL(KIND=1); scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Return the number of seconds of runtime since the start of the process’s execution
in Result, and the user and system components of this in ‘TArray (1)’ and ‘TArray (2)’
respectively. The value of Result is equal to ‘TArray (1) + TArray(2)’.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine.

For information on other intrinsics with the same name: See Section 8.11.9.97 [ETime
Intrinsic (function)], page 137.

8.11.9.97 ETime Intrinsic (function)

ETime (TArray)
ETime: REAL(KIND=1) function.
TArray: REAL(KIND=1); DIMENSION(2); INTENT(OUT).
Intrinsic groups: unix.
Description:

Return the number of seconds of runtime since the start of the process’s execution as the
function value, and the user and system components of this in ‘TArray (1)’ and ‘TArray (2)’
respectively. The functions’ value is equal to ‘TArray (1) + TArray(2)’.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

138 Using and Porting GNU Fortran

For information on other intrinsics with the same name: See Section 8.11.9.96 [ETime
Intrinsic (subroutine)], page 137.

8.11.9.98 Exit Intrinsic

CALL Exit(Status)
Status: INTEGER not wider than the default kind; OPTIONAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Exit the program with status Status after closing open Fortran I/O units and otherwise
behaving as exit (2). If Status is omitted the canonical ‘success’ value will be returned to
the system.

8.11.9.99 Exp Intrinsic

Exp (X)
Exp: REAL or COMPLEX function, the exact type being that of argument X.
X: REAL or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns ‘ex*x X’ where e is approximately 2.7182818.
See Section 8.11.9.170 [Log Intrinsic|, page 160, for the inverse of this function.

8.11.9.100 Exponent Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Exponent’ to use this name for an external procedure.

8.11.9.101 FDate Intrinsic (subroutine)

CALL FDate(Date)
Date: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:
Returns the current date (using the same format as CTIME()) in Date.
Equivalent to:
CALL CTIME(Date, TIMES())

Programs making use of this intrinsic might not be Year 10000 (Y10K) compliant. For
example, the date might appear, to such programs, to wrap around (change from a larger
value to a smaller one) as of the Year 10000.

See Section 8.11.9.53 [CTime Intrinsic (subroutine)], page 126.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine.

For information on other intrinsics with the same name: See Section 8.11.9.102 [FDate
Intrinsic (function)], page 139.

Chapter 8: The GNU Fortran Language 139

8.11.9.102 FDate Intrinsic (function)

FDate ()
FDate: CHARACTER* (*) function.
Intrinsic groups: unix.
Description:
Returns the current date (using the same format as CTIME()).
Equivalent to:
CTIME(TIMES())

Programs making use of this intrinsic might not be Year 10000 (Y10K) compliant. For
example, the date might appear, to such programs, to wrap around (change from a larger
value to a smaller one) as of the Year 10000.

See Section 8.11.9.54 [CTime Intrinsic (function)], page 127.

For information on other intrinsics with the same name: See Section 8.11.9.101 [FDate
Intrinsic (subroutine)], page 138.

8.11.9.103 FGet Intrinsic (subroutine)

CALL FGet(C, Status)
C': CHARACTER; scalar; INTENT(OUT).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Reads a single character into C in stream mode from unit 5 (by-passing normal formatted
output) using getc(3). Returns in Status 0 on success, —1 on end-of-file, and the error
code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 10.5.2.37 [FGet
Intrinsic (function)], page 215.

8.11.9.104 FGetC Intrinsic (subroutine)

CALL FGetC(Unit, C, Status)
Unit: INTEGER; scalar; INTENT(IN).
C': CHARACTER; scalar; INTENT(OUT).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Reads a single character into C in stream mode from unit Unit (by-passing normal
formatted output) using getc(3). Returns in Status 0 on success, —1 on end-of-file, and
the error code from ferror(3) otherwise.

140 Using and Porting GNU Fortran

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/0O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 10.5.2.38 [FGetC
Intrinsic (function)], page 215.

8.11.9.105 Float Intrinsic

Float (A)
Float: REAL(KIND=1) function.
A: INTEGER; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of REAL() that is specific to one type for A. See Section 8.11.9.211 [Real
Intrinsic|, page 169.

8.11.9.106 Floor Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Floor’ to use this name for an external procedure.

8.11.9.107 Flush Intrinsic

CALL Flush(Unit)
Unit: INTEGER; OPTIONAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Flushes Fortran unit(s) currently open for output. Without the optional argument, all
such units are flushed, otherwise just the unit specified by Unit.

Some non-GNU implementations of Fortran provide this intrinsic as a library procedure
that might or might not support the (optional) Unit argument.

8.11.9.108 FNum Intrinsic

FNum (Unit)
FNum: INTEGER(KIND=1) function.
Unit: INTEGER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns the Unix file descriptor number corresponding to the open Fortran I/O unit
Unit. This could be passed to an interface to C 1/O routines.

Chapter 8: The GNU Fortran Language 141

8.11.9.109 FPut Intrinsic (subroutine)

CALL FPut(C, Status)
C': CHARACTER; scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Writes the single character C in stream mode to unit 6 (by-passing normal formatted
output) using putc(3). Returns in Status 0 on success, the error code from ferror(3)
otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 10.5.2.41 [FPut
Intrinsic (function)], page 216.

8.11.9.110 FPutC Intrinsic (subroutine)

CALL FPutC(Unit, C, Status)
Unit: INTEGER; scalar; INTENT(IN).
C': CHARACTER,; scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Writes the single character Unit in stream mode to unit 6 (by-passing normal formatted
output) using putc(3). Returns in C 0 on success, the error code from ferror (3) otherwise.

Stream I/0 should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 10.5.2.42 [FPutC
Intrinsic (function)], page 216.

8.11.9.111 Fraction Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Fraction’ to use this name for an external procedure.

8.11.9.112 FSeek Intrinsic

CALL FSeek(Unit, Offset, Whence, ErrLab)
Unit: INTEGER; scalar; INTENT(IN).
Offset: INTEGER; scalar; INTENT(IN).
Whence: INTEGER; scalar; INTENT(IN).
ErrLab: ‘xlabel’; where label is the label of an executable statement; OPTIONAL.

Intrinsic groups: unix.

142 Using and Porting GNU Fortran

Description:

Attempts to move Fortran unit Unit to the specified Offset: absolute offset if Whence=0;
relative to the current offset if Whence=1; relative to the end of the file if Whence=2. It
branches to label ErrLab if Unit is not open or if the call otherwise fails.

8.11.9.113 FStat Intrinsic (subroutine)

CALL FStat(Unit, SArray, Status)
Unit: INTEGER; scalar; INTENT(IN).
SArray: INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Obtains data about the file open on Fortran I/O unit Unit and places them in the array
SArray. The values in this array are extracted from the stat structure as returned by
fstat(2) q.v., as follows:

1. Device ID

Inode number

File mode

Number of links

Owner’s uid

Owner’s gid

ID of device containing directory entry for file (0 if not available)

File size (bytes)

© X NS e W N

Last access time

Last modification time

—_ =
= O

. Last file status change time
Preferred I/0 block size (-1 if not available)
Number of blocks allocated (-1 if not available)

—_ =
w N

Not all these elements are relevant on all systems. If an element is not relevant, it is
returned as 0.

If the Status argument is supplied, it contains 0 on success or a non-zero error code upon
return.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 8.11.9.114 [FStat
Intrinsic (function)], page 143.

Chapter 8: The GNU Fortran Language 143

8.11.9.114 FStat Intrinsic (function)

FStat (Unit, SArray)
FStat: INTEGER(KIND=1) function.
Unit: INTEGER; scalar; INTENT(IN).
SArray: INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).
Intrinsic groups: unix.
Description:

Obtains data about the file open on Fortran I/O unit Unit and places them in the array
SArray. The values in this array are extracted from the stat structure as returned by
fstat(2) q.v., as follows:

1. Device ID

Inode number

File mode

Number of links

Owner’s uid

Owner’s gid

ID of device containing directory entry for file (0 if not available)
File size (bytes)

Last access time

© XN O

—_
e

Last modification time

[y
—_

. Last file status change time
Preferred I/0 block size (-1 if not available)
Number of blocks allocated (-1 if not available)

—_ =
W

Not all these elements are relevant on all systems. If an element is not relevant, it is
returned as 0.

Returns 0 on success or a non-zero error code.

For information on other intrinsics with the same name: See Section 8.11.9.113 [FStat
Intrinsic (subroutine)], page 142.

8.11.9.115 FTell Intrinsic (subroutine)

CALL FTell(Unit, Offset)

Unit: INTEGER; scalar; INTENT(IN).
Offset: INTEGER(KIND=1); scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Sets Offset to the current offset of Fortran unit Unit (or to —1 if Unit is not open).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine.

For information on other intrinsics with the same name: See Section 8.11.9.116 [FTell
Intrinsic (function)], page 144.

144 Using and Porting GNU Fortran

8.11.9.116 FTell Intrinsic (function)

FTell(Unit)
FTell: INTEGER(KIND=1) function.
Unit: INTEGER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:
Returns the current offset of Fortran unit Unit (or —1 if Unit is not open).

For information on other intrinsics with the same name: See Section 8.11.9.115 [FTell
Intrinsic (subroutine)], page 143.

8.11.9.117 GError Intrinsic

CALL GError(Message)
Message: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Returns the system error message corresponding to the last system error (C errno).

8.11.9.118 GetArg Intrinsic

CALL GetArg(Pos, Value)
Pos: INTEGER not wider than the default kind; scalar; INTENT(IN).
Value: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Sets Value to the Pos-th command-line argument (or to all blanks if there are fewer
than Value command-line arguments); CALL GETARG (O, value) sets value to the name of
the program (on systems that support this feature).

See Section 8.11.9.133 [IArgC Intrinsic], page 148, for information on how to get the
number of arguments.

8.11.9.119 GetCWD Intrinsic (subroutine)

CALL GetCWD(Name, Status)
Name: CHARACTER, scalar; INTENT(OUT).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Places the current working directory in Name. If the Status argument is supplied, it
contains 0 success or a non-zero error code upon return (ENOSYS if the system does not
provide getcwd (3) or getwd(3)).

Chapter 8: The GNU Fortran Language 145

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 8.11.9.120 [GetCWD
Intrinsic (function)], page 145.

8.11.9.120 GetCWD Intrinsic (function)

GetCWD (Name)
GetCWD: INTEGER(KIND=1) function.
Name: CHARACTER, scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Places the current working directory in Name. Returns 0 on success, otherwise a non-zero
error code (ENOSYS if the system does not provide getcwd(3) or getwd(3)).

For information on other intrinsics with the same name: See Section 8.11.9.119 [GetCWD
Intrinsic (subroutine)], page 144.

8.11.9.121 GetEnv Intrinsic

CALL GetEnv(Name, Value)
Name: CHARACTER; scalar; INTENT(IN).
Value: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Sets Value to the value of environment variable given by the value of Name ($name in
shell terms) or to blanks if $name has not been set. A null character (‘CHAR(0)’) marks the
end of the name in Name—otherwise, trailing blanks in Name are ignored.

8.11.9.122 GetGId Intrinsic

GetGId()
GetGId: INTEGER(KIND=1) function.
Intrinsic groups: unix.
Description:
Returns the group id for the current process.

8.11.9.123 GetLog Intrinsic

CALL GetLog(Login)
Login: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:
Returns the login name for the process in Login.

Caution: On some systems, the getlogin(3) function, which this intrinsic calls at run
time, is either not implemented or returns a null pointer. In the latter case, this intrinsic
returns blanks in Login.

146

8.11.9.124 GetPId Intrinsic

GetPId()
GetPId: INTEGER(KIND=1) function.
Intrinsic groups: unix.
Description:

Returns the process id for the current process.

8.11.9.125 GetUId Intrinsic

GetUI4A()
GetUId: INTEGER(KIND=1) function.
Intrinsic groups: unix.
Description:

Returns the user id for the current process.

8.11.9.126 GMTime Intrinsic

CALL GMTime(STime, TArray)
STime: INTEGER(KIND=1); scalar; INTENT(IN).

Using and Porting GNU Fortran

TArray: INTEGER(KIND=1); DIMENSION(9): INTENT(OUT).

Intrinsic groups: unix.

Description:

Given a system time value STime, fills TArray with values extracted from it appropriate

to the GMT time zone using gmtime(3).

The array elements are as follows:

Minutes after the hour, range 0-59

Hours past midnight, range 0-23

Day of month, range 0-31

Number of months since January, range 0-12
Years since 1900

Number of days since Sunday, range 0-6

Days since January 1

© P NN

negative if the information isn’t available.

Seconds after the minute, range 0-59 or 0-61 to allow for leap seconds

Daylight savings indicator: positive if daylight savings is in effect, zero if not, and

Chapter 8: The GNU Fortran Language 147

8.11.9.127 HostNm Intrinsic (subroutine)

CALL HostNm(Name, Status)
Name: CHARACTER, scalar; INTENT(OUT).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Fills Name with the system’s host name returned by gethostname(2). If the Status
argument is supplied, it contains 0 on success or a non-zero error code upon return (ENOSYS
if the system does not provide gethostname(2)).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

On some systems (specifically SCO) it might be necessary to link the “socket” library
if you call this routine. Typically this means adding ‘~1g2c -1socket -1m’ to the g77
command line when linking the program.

For information on other intrinsics with the same name: See Section 8.11.9.128 [HostNm
Intrinsic (function)], page 147.

8.11.9.128 HostNm Intrinsic (function)

HostNm(Name)
HostNm: INTEGER(KIND=1) function.
Name: CHARACTER, scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Fills Name with the system’s host name returned by gethostname(2), returning 0 on
success or a non-zero error code (ENOSYS if the system does not provide gethostname(2)).

On some systems (specifically SCO) it might be necessary to link the “socket” library
if you call this routine. Typically this means adding ‘-1g2c -lsocket -1m’ to the g77
command line when linking the program.

For information on other intrinsics with the same name: See Section 8.11.9.127 [HostNm
Intrinsic (subroutine)], page 147.

8.11.9.129 Huge Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Huge’ to use this name for an external procedure.

8.11.9.130 IAbs Intrinsic

IAbs (A)
TAbs: INTEGER(KIND=1) function.
A: INTEGER (KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).

148 Using and Porting GNU Fortran

Description:

Archaic form of ABS() that is specific to one type for A. See Section 8.11.9.2 [Abs
Intrinsic], page 113.

8.11.9.131 TAChar Intrinsic

IAChar (C)
TAChar: INTEGER(KIND=1) function.
C': CHARACTER,; scalar; INTENT(IN).
Intrinsic groups: f2c, £90.
Description:
Returns the code for the ASCII character in the first character position of C.
See Section 8.11.9.4 [AChar Intrinsic|, page 114, for the inverse of this function.

See Section 8.11.9.137 [IChar Intrinsic|, page 149, for the function corresponding to the
system’s native character set.

8.11.9.132 TAnd Intrinsic

IAnd (I, J)

TIAnd: INTEGER function, the exact type being the result of cross-promoting the types of all
the arguments.

I: INTEGER, scalar; INTENT(IN).
J: INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, £90, vxt.
Description:

Returns value resulting from boolean AND of pair of bits in each of I and J.

8.11.9.133 TArgC Intrinsic

IArgCQO
IArgC: INTEGER(KIND=1) function.
Intrinsic groups: unix.
Description:
Returns the number of command-line arguments.

This count does not include the specification of the program name itself.

8.11.9.134 IBClIr Intrinsic

IBClr (I, Pos)
IBClr: INTEGER function, the ‘KIND=" value of the type being that of argument I.
I: INTEGER, scalar; INTENT(IN).
Pos: INTEGER; scalar; INTENT(IN).

Intrinsic groups: mil, £90, vxt.

Chapter 8: The GNU Fortran Language 149

Description:

Returns the value of I with bit Pos cleared (set to zero). See Section 8.11.9.34 [BTest
Intrinsic], page 121, for information on bit positions.

8.11.9.135 IBits Intrinsic

IBits(I, Pos, Len)
IBits: INTEGER function, the ‘KIND=" value of the type being that of argument I.
I: INTEGER; scalar; INTENT(IN).
Pos: INTEGER; scalar; INTENT(IN).
Len: INTEGER, scalar; INTENT(IN).
Intrinsic groups: mil, £90, vxt.
Description:

Extracts a subfield of length Len from I, starting from bit position Pos and extending
left for Len bits. The result is right-justified and the remaining bits are zeroed. The value
of ‘Pos+Len’ must be less than or equal to the value ‘BIT_SIZE(I)’. See Section 8.11.9.33
[Bit_Size Intrinsic], page 120.

8.11.9.136 IBSet Intrinsic

IBSet (I, Pos)
IBSet: INTEGER function, the ‘KIND=" value of the type being that of argument I.
I: INTEGER, scalar; INTENT(IN).
Pos: INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, £90, vxt.
Description:

Returns the value of I with bit Pos set (to one). See Section 8.11.9.34 [BTest Intrinsic|,
page 121, for information on bit positions.

8.11.9.137 IChar Intrinsic

IChar(C)
IChar: INTEGER(KIND=1) function.
C': CHARACTER; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the code for the character in the first character position of C.

Because the system’s native character set is used, the correspondence between character
and their codes is not necessarily the same between GNU Fortran implementations.

Note that no intrinsic exists to convert a printable character string to a numerical value.
For example, there is no intrinsic that, given the CHARACTER value ‘’154°’, returns an
INTEGER or REAL value with the value ‘154’.

Instead, you can use internal-file I/O to do this kind of conversion. For example:

150 Using and Porting GNU Fortran

INTEGER VALUE

CHARACTER*10 STRING

STRING = ’154°

READ (STRING, ’(I10)’), VALUE
PRINT *, VALUE

END

The above program, when run, prints:
154
See Section 8.11.9.39 [Char Intrinsic], page 122, for the inverse of the ICHAR function.

See Section 8.11.9.131 [IAChar Intrinsic|, page 148, for the function corresponding to
the ASCII character set.

8.11.9.138 IDate Intrinsic (UNIX)

CALL IDate(TArray)
TArray: INTEGER(KIND=1); DIMENSION(3); INTENT(OUT).
Intrinsic groups: unix.
Description:

Fills TArray with the numerical values at the current local time of day, month (in the
range 1-12), and year in elements 1, 2, and 3, respectively. The year has four significant
digits.

Programs making use of this intrinsic might not be Year 10000 (Y10K) compliant. For
example, the date might appear, to such programs, to wrap around (change from a larger
value to a smaller one) as of the Year 10000.

For information on other intrinsics with the same name: See Section 10.5.2.43 [IDate
Intrinsic (VXT)], page 216.

8.11.9.139 IDiM Intrinsic

IDiM(X, Y)
IDiM: INTEGER(KIND=1) function.
X: INTEGER (KIND=1); scalar; INTENT(IN).
Y: INTEGER(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of DIM() that is specific to one type for X and Y. See Section 8.11.9.75
[DiM Intrinsic], page 132.

8.11.9.140 IDInt Intrinsic

IDInt (A)
IDInt: INTEGER(KIND=1) function.
A: REAL (KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).

Chapter 8: The GNU Fortran Language 151

Description:

Archaic form of INT() that is specific to one type for A. See Section 8.11.9.148 [Int
Intrinsic], page 153.

8.11.9.141 IDNInt Intrinsic

IDNInt (A)
IDNInt: INTEGER(KIND=1) function.
A: REAL (KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of NINT() that is specific to one type for A. See Section 8.11.9.198 [NInt
Intrinsic], page 167.

8.11.9.142 IEOr Intrinsic

IEOr (I, J)

IEOr: INTEGER function, the exact type being the result of cross-promoting the types of all
the arguments.

I: INTEGER, scalar; INTENT(IN).
J: INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, £90, vxt.
Description:

Returns value resulting from boolean exclusive-OR of pair of bits in each of I and J.

8.11.9.143 IErrNo Intrinsic

IErrNo()
IErrNo: INTEGER(KIND=1) function.
Intrinsic groups: unix.
Description:

Returns the last system error number (corresponding to the C errno).

8.11.9.144 IFix Intrinsic

IFix(A)
IFix: INTEGER(KIND=1) function.
A: REAL(KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Archaic form of INT() that is specific to one type for A. See Section 8.11.9.148 [Int
Intrinsic|, page 153.

152 Using and Porting GNU Fortran

8.11.9.145 Imag Intrinsic

Imag(Z)
Imag: REAL function, the ‘KIND=’ value of the type being that of argument Z.
Z: COMPLEX; scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:
The imaginary part of Z is returned, without conversion.

Note: The way to do this in standard Fortran 90 is ‘AIMAG(Z)’. However, when, for
example, Z is DOUBLE COMPLEX, ‘AIMAG(Z)’ means something different for some compilers
that are not true Fortran 90 compilers but offer some extensions standardized by Fortran
90 (such as the DOUBLE COMPLEX type, also known as COMPLEX (KIND=2)).

The advantage of IMAG() is that, while not necessarily more or less portable than
ATMAG(), it is more likely to cause a compiler that doesn’t support it to produce a di-
agnostic than generate incorrect code.

See Section 8.11.5 [REAL() and AIMAG() of Complex], page 110, for more information.

8.11.9.146 ImagPart Intrinsic

ImagPart (Z)
ImagPart: REAL function, the ‘KIND=" value of the type being that of argument Z.
Z: COMPLEX; scalar; INTENT(IN).
Intrinsic groups: gnu.
Description:
The imaginary part of Z is returned, without conversion.

Note: The way to do this in standard Fortran 90 is ‘AIMAG(Z)’. However, when, for
example, Z is DOUBLE COMPLEX, ‘AIMAG(Z)’ means something different for some compilers
that are not true Fortran 90 compilers but offer some extensions standardized by Fortran
90 (such as the DOUBLE COMPLEX type, also known as COMPLEX (KIND=2)).

The advantage of IMAGPART () is that, while not necessarily more or less portable than
ATMAG(), it is more likely to cause a compiler that doesn’t support it to produce a diagnostic
than generate incorrect code.

See Section 8.11.5 [REAL() and AIMAG() of Complex], page 110, for more information.

8.11.9.147 Index Intrinsic

Index (String, Substring)
Index: INTEGER(KIND=1) function.
String: CHARACTER; scalar; INTENT(IN).
Substring: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the position of the start of the first occurrence of string Substring as a substring
in String, counting from one. If Substring doesn’t occur in String, zero is returned.

Chapter 8: The GNU Fortran Language 153

8.11.9.148 Int Intrinsic

Int(A)
Int: INTEGER(KIND=1) function.
A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns A with the fractional portion of its magnitude truncated and its sign preserved,
converted to type INTEGER (KIND=1).

If A is type COMPLEX, its real part is truncated and converted, and its imaginary part is
disregarded.

See Section 8.11.9.198 [NInt Intrinsic], page 167, for how to convert, rounded to nearest
whole number.

See Section 8.11.9.9 [Alnt Intrinsic], page 115, for how to truncate to whole number
without converting.

8.11.9.149 Int2 Intrinsic

Int2(A)
Int2: INTEGER(KIND=6) function.
A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: gnu.
Description:

Returns A with the fractional portion of its magnitude truncated and its sign preserved,
converted to type INTEGER (KIND=6).

If A is type COMPLEX, its real part is truncated and converted, and its imaginary part is
disgregarded.

See Section 8.11.9.148 [Int Intrinsic|, page 153.

The precise meaning of this intrinsic might change in a future version of the GNU Fortran
language, as more is learned about how it is used.

8.11.9.150 Int8 Intrinsic

Int8(A)
Int8: INTEGER(KIND=2) function.
A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: gnu.
Description:
Returns A with the fractional portion of its magnitude truncated and its sign preserved,
converted to type INTEGER (KIND=2).

If A is type COMPLEX, its real part is truncated and converted, and its imaginary part is
disgregarded.

See Section 8.11.9.148 [Int Intrinsic|, page 153.

154 Using and Porting GNU Fortran

The precise meaning of this intrinsic might change in a future version of the GNU Fortran
language, as more is learned about how it is used.

8.11.9.151 IOr Intrinsic

I0r(I, J)

IOr: INTEGER function, the exact type being the result of cross-promoting the types of all
the arguments.

I: INTEGER, scalar; INTENT(IN).
J: INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, £90, vxt.
Description:

Returns value resulting from boolean OR of pair of bits in each of I and J.

8.11.9.152 IRand Intrinsic

IRand (Flag)
IRand: INTEGER(KIND=1) function.
Flag: INTEGER; OPTIONAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns a uniform quasi-random number up to a system-dependent limit. If Flag is 0,
the next number in sequence is returned; if Flag is 1, the generator is restarted by calling
the UNIX function ‘srand(0)’; if Flag has any other value, it is used as a new seed with
srand ().

See Section 8.11.9.236 [SRand Intrinsic|, page 176.

Note: As typically implemented (by the routine of the same name in the C library), this
random number generator is a very poor one, though the BSD and GNU libraries provide
a much better implementation than the ‘traditional’ one. On a different system you almost
certainly want to use something better.

8.11.9.153 IsaTty Intrinsic

IsaTty(Unit)
IsaTty: LOGICAL(KIND=1) function.
Unit: INTEGER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns .TRUE. if and only if the Fortran I/O unit specified by Unit is connected to a
terminal device. See isatty(3).

Chapter 8: The GNU Fortran Language 155

8.11.9.154 IShft Intrinsic

IShft (I, Shift)
IShft: INTEGER function, the ‘KIND=" value of the type being that of argument I.
I: INTEGER, scalar; INTENT(IN).
Shift: INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, £90, vxt.
Description:

All bits representing I are shifted Shift places. ‘Shift.GT.0’ indicates a left shift,
‘Shift.EQ.0’ indicates no shift and ‘Shift.LT.0" indicates a right shift. If the absolute
value of the shift count is greater than ‘BIT_SIZE(I)’, the result is undefined. Bits shifted
out from the left end or the right end are lost. Zeros are shifted in from the opposite end.

See Section 8.11.9.155 [IShftC Intrinsic|, page 155, for the circular-shift equivalent.

8.11.9.155 IShftC Intrinsic

IShftC(I, Shift, Size)
IShftC: INTEGER function, the ‘KIND=’ value of the type being that of argument L
I: INTEGER, scalar; INTENT(IN).
Shift: INTEGER; scalar; INTENT(IN).
Size: INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, £90, vxt.
Description:

The rightmost Size bits of the argument I are shifted circularly Shift places, i.e. the bits
shifted out of one end are shifted into the opposite end. No bits are lost. The unshifted
bits of the result are the same as the unshifted bits of I. The absolute value of the argument
Shift must be less than or equal to Size. The value of Size must be greater than or equal
to one and less than or equal to ‘BIT_SIZE(I)’.

See Section 8.11.9.154 [IShft Intrinsic], page 155, for the logical shift equivalent.

8.11.9.156 ISign Intrinsic

ISign(A, B)
ISign: INTEGER(KIND=1) function.
A: INTEGER (KIND=1); scalar; INTENT(IN).
B: INTEGER (KIND=1); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of SIGN() that is specific to one type for A and B. See Section 8.11.9.227
[Sign Intrinsic|, page 173.

156 Using and Porting GNU Fortran

8.11.9.157 ITime Intrinsic

CALL ITime(TArray)
TArray: INTEGER(KIND=1); DIMENSION(3); INTENT(OUT).
Intrinsic groups: unix.
Description:

Returns the current local time hour, minutes, and seconds in elements 1, 2, and 3 of
TArray, respectively.

8.11.9.158 Kill Intrinsic (subroutine)

CALL Kill(Pid, Signal, Status)
Pid: INTEGER; scalar; INTENT(IN).
Signal: INTEGER; scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Sends the signal specified by Signal to the process Pid. If the Status argument is supplied,
it contains 0 on success or a non-zero error code upon return. See kill(2).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.93 [Kill
Intrinsic (function)], page 222.

8.11.9.159 Kind Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Kind’ to use this name for an external procedure.

8.11.9.160 LBound Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL LBound’ to use this name for an external procedure.

8.11.9.161 Len Intrinsic

Len(String)
Len: INTEGER(KIND=1) function.
String: CHARACTER; scalar.
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the length of String.

If String is an array, the length of an element of String is returned.

Chapter 8: The GNU Fortran Language 157

Note that String need not be defined when this intrinsic is invoked, since only the length,
not the content, of String is needed.

See Section 8.11.9.33 [Bit_Size Intrinsic|, page 120, for the function that determines the
size of its argument in bits.

8.11.9.162 Len_Trim Intrinsic

Len_Trim(String)
Len_Trim: INTEGER(KIND=1) function.
String: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: £90.
Description:

Returns the index of the last non-blank character in String. LNBLNK and LEN_TRIM are
equivalent.

8.11.9.163 LGe Intrinsic

LGe(String_A, String_B)
LGe: LOGICAL(KIND=1) function.
String_A: CHARACTER; scalar; INTENT(IN).
String_B: CHARACTER, scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns ‘. TRUE.’ if ‘String_A .GE. String_B’, ¢ .FALSE.’ otherwise. String_A and String_B
are interpreted as containing ASCII character codes. If either value contains a character
not in the ASCII character set, the result is processor dependent.

If the String_A and String_B are not the same length, the shorter is compared as if spaces
were appended to it to form a value that has the same length as the longer.

The lexical comparison intrinsics LGe, LGt, LLe, and LLt differ from the correspond-
ing intrinsic operators .GE., .GT., .LE., .LT.. Because the ASCII collating sequence is
assumed, the following expressions always return ‘. TRUE.

LGE (707 s) 7)
LGE (°A’, °07%)
LGE (’a’, ’A?)

The following related expressions do not always return ‘. TRUE.’, as they are not neces-

sarily evaluated assuming the arguments use ASCII encoding;:

’0’ .GE.
A’ .GE. 0’
’a’ .GE. A’

The same difference exists between LGt and .GT.; between LLe and .LE.; and between
LLt and .LT..

158 Using and Porting GNU Fortran

8.11.9.164 LGt Intrinsic

LGt (String_A, String_B)
LGt: LOGICAL(KIND=1) function.
String_A: CHARACTER; scalar; INTENT(IN).
String_B: CHARACTER, scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns ‘. TRUE. if ‘String_A .GT. String_B’, ‘ .FALSE.’ otherwise. String_A and String_B
are interpreted as containing ASCII character codes. If either value contains a character
not in the ASCII character set, the result is processor dependent.

If the String_A and String_B are not the same length, the shorter is compared as if spaces
were appended to it to form a value that has the same length as the longer.

See Section 8.11.9.163 [LGe Intrinsic|, page 157, for information on the distinction be-
tween the LGT intrinsic and the .GT. operator.

8.11.9.165 Link Intrinsic (subroutine)

CALL Link(Pathl, Path2, Status)
Pathl: CHARACTER, scalar; INTENT(IN).
Path2: CHARACTER, scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Makes a (hard) link from file Pathl to Path2. A null character (‘CHAR(0)’) marks the
end of the names in Pathl and Path2—otherwise, trailing blanks in Pathl and Path2 are
ignored. If the Status argument is supplied, it contains 0 on success or a non-zero error
code upon return. See 1ink(2).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.94 [Link
Intrinsic (function)], page 222.

8.11.9.166 LLe Intrinsic

LLe(String_A, String_B)
LLe: LOGICAL(KIND=1) function.
String_A: CHARACTER, scalar; INTENT(IN).
String_B: CHARACTER,; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).

Description:

Chapter 8: The GNU Fortran Language 159

Returns ‘. TRUE. if ‘String_A .LE. String_B’, ‘ .FALSE.’ otherwise. String_A and String_B
are interpreted as containing ASCII character codes. If either value contains a character
not in the ASCII character set, the result is processor dependent.

If the String_A and String_B are not the same length, the shorter is compared as if spaces
were appended to it to form a value that has the same length as the longer.

See Section 8.11.9.163 [LGe Intrinsic|, page 157, for information on the distinction be-
tween the LLE intrinsic and the .LE. operator.

8.11.9.167 LLt Intrinsic

LLt(String_A, String_B)
LLt: LOGICAL(KIND=1) function.
String_A: CHARACTER, scalar; INTENT(IN).
String_B: CHARACTER, scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns ‘. TRUE.’ if ‘String_A .LT. String_B’, ‘ .FALSE.’ otherwise. String_A and String_B
are interpreted as containing ASCII character codes. If either value contains a character
not in the ASCII character set, the result is processor dependent.

If the String_A and String_B are not the same length, the shorter is compared as if spaces
were appended to it to form a value that has the same length as the longer.

See Section 8.11.9.163 [LGe Intrinsic], page 157, for information on the distinction be-
tween the LLT intrinsic and the .LT. operator.

8.11.9.168 LnBlnk Intrinsic

LnBlnk (String)
LnBlnk: INTEGER(KIND=1) function.
String: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns the index of the last non-blank character in String. LNBLNK and LEN_TRIM are
equivalent.

8.11.9.169 Loc Intrinsic

Loc (Entity)
Loc: INTEGER(KIND=7) function.
Entity: Any type; cannot be a constant or expression.
Intrinsic groups: unix.
Description:

The LOC() intrinsic works the same way as the 4LOC() construct. See Section 8.8.1 [The
%LOC() Construct], page 102, for more information.

160 Using and Porting GNU Fortran

8.11.9.170 Log Intrinsic

Log (X)
Log: REAL or COMPLEX function, the exact type being that of argument X.
X: REAL or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the natural logarithm of X, which must be greater than zero or, if type COMPLEX,
must not be zero.

See Section 8.11.9.99 [Exp Intrinsic], page 138, for the inverse of this function.

See Section 8.11.9.171 [Logl0 Intrinsic], page 160, for the ‘common’ (base-10) logarithm
function.

8.11.9.171 Logl0 Intrinsic

Log10(X)
Log10: REAL function, the ‘KIND=’ value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the common logarithm (base 10) of X, which must be greater than zero.
The inverse of this function is ‘10. ** LOG10(X)’.
See Section 8.11.9.170 [Log Intrinsic|, page 160, for the natural logarithm function.

8.11.9.172 Logical Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Logical’ to use this name for an external procedure.

8.11.9.173 Long Intrinsic

Long(A)
Long: INTEGER(KIND=1) function.
A: INTEGER(KIND=6); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Archaic form of INT() that is specific to one type for A. See Section 8.11.9.148 [Int
Intrinsic|, page 153.

The precise meaning of this intrinsic might change in a future version of the GNU Fortran
language, as more is learned about how it is used.

Chapter 8: The GNU Fortran Language 161

8.11.9.174 LShift Intrinsic

LShift (I, Shift)
LShift: INTEGER function, the ‘KIND=" value of the type being that of argument I.
I: INTEGER, scalar; INTENT(IN).
Shift: INTEGER; scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:
Returns I shifted to the left Shift bits.

Although similar to the expression ‘I*(2+xShift)’, there are important differences. For
example, the sign of the result is not necessarily the same as the sign of L.

Currently this intrinsic is defined assuming the underlying representation of I is as a
two’s-complement integer. It is unclear at this point whether that definition will apply
when a different representation is involved.

See Section 8.11.9.174 [LShift Intrinsic], page 161, for the inverse of this function.

See Section 8.11.9.154 [IShft Intrinsic], page 155, for information on a more widely
available left-shifting intrinsic that is also more precisely defined.

8.11.9.175 LStat Intrinsic (subroutine)

CALL LStat(File, SArray, Status)
File: CHARACTER; scalar; INTENT(IN).
SArray: INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Obtains data about the given file File and places them in the array SArray. A null
character (‘CHAR(0)’) marks the end of the name in File—otherwise, trailing blanks in File
are ignored. If File is a symbolic link it returns data on the link itself, so the routine is
available only on systems that support symbolic links. The values in this array are extracted
from the stat structure as returned by fstat(2) q.v., as follows:

1. Device ID

Inode number

File mode

Number of links

Owner’s uid

Owner’s gid

ID of device containing directory entry for file (0 if not available)
File size (bytes)

Last access time

© oo NS O W

—
e

Last modification time

162 Using and Porting GNU Fortran

11. Last file status change time
12. Preferred I/O block size (-1 if not available)
13. Number of blocks allocated (-1 if not available)
Not all these elements are relevant on all systems. If an element is not relevant, it is
returned as 0.

If the Status argument is supplied, it contains 0 on success or a non-zero error code upon
return (ENOSYS if the system does not provide 1stat(2)).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 8.11.9.176 [LStat
Intrinsic (function)], page 162.

8.11.9.176 LStat Intrinsic (function)

LStat (File, SArray)
LStat: INTEGER(KIND=1) function.
File: CHARACTER; scalar; INTENT(IN).
SArray: INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).
Intrinsic groups: unix.
Description:

Obtains data about the given file File and places them in the array SArray. A null
character (‘CHAR(0)’) marks the end of the name in File—otherwise, trailing blanks in File
are ignored. If File is a symbolic link it returns data on the link itself, so the routine is
available only on systems that support symbolic links. The values in this array are extracted
from the stat structure as returned by fstat(2) q.v., as follows:

1. Device ID

Inode number

File mode

Number of links

Owner’s uid

Owner’s gid

ID of device containing directory entry for file (0 if not available)
File size (bytes)

Last access time

© 00N o N

—
e

Last modification time

—_
—_

. Last file status change time
Preferred I/0 block size (-1 if not available)
Number of blocks allocated (-1 if not available)

—_ =
W

Not all these elements are relevant on all systems. If an element is not relevant, it is
returned as 0.

Chapter 8: The GNU Fortran Language 163

Returns 0 on success or a non-zero error code (ENOSYS if the system does not provide
1stat(2)).

For information on other intrinsics with the same name: See Section 8.11.9.175 [LStat
Intrinsic (subroutine)], page 161.

8.11.9.177 LTime Intrinsic

CALL LTime(STime, TArray)
STime: INTEGER(KIND=1); scalar; INTENT(IN).
TArray: INTEGER(KIND=1); DIMENSION(9); INTENT(OUT).
Intrinsic groups: unix.
Description:

Given a system time value STime, fills TArray with values extracted from it appropriate
to the GMT time zone using localtime(3).

The array elements are as follows:
Seconds after the minute, range 0-59 or 0-61 to allow for leap seconds
Minutes after the hour, range 0-59
Hours past midnight, range 0-23
Day of month, range 0-31
Number of months since January, range 0-12
Years since 1900
Number of days since Sunday, range 0—6

Days since January 1

© XN e W

Daylight savings indicator: positive if daylight savings is in effect, zero if not, and
negative if the information isn’t available.

8.11.9.178 MatMul Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL MatMul’ to use this name for an external procedure.

8.11.9.179 Max Intrinsic

Max(A-1, A-2, ..., A-n)

Max: INTEGER or REAL function, the exact type being the result of cross-promoting the
types of all the arguments.

A: INTEGER or REAL; at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the argument with the largest value.

See Section 8.11.9.188 [Min Intrinsic|, page 165, for the opposite function.

164 Using and Porting GNU Fortran

8.11.9.180 Max0 Intrinsic

Max0(A-1, A-2, ..., A-n)
Max(: INTEGER(KIND=1) function.
A: INTEGER(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MAX() that is specific to one type for A. See Section 8.11.9.179 [Max
Intrinsic|, page 163.

8.11.9.181 Max1 Intrinsic

Max1(A-1, A-2, ..., A-n)
Max1: INTEGER(KIND=1) function.
A: REAL(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MAX () that is specific to one type for A and a different return type. See
Section 8.11.9.179 [Max Intrinsic|, page 163.

8.11.9.182 MaxExponent Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL MaxExponent’ to use this name for an external procedure.

8.11.9.183 MaxLoc Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL MaxLoc’ to use this name for an external procedure.

8.11.9.184 MaxVal Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL MaxVal’ to use this name for an external procedure.

8.11.9.185 MClock Intrinsic

MClock ()

MClock: INTEGER(KIND=1) function.
Intrinsic groups: unix.
Description:

Returns the number of clock ticks since the start of the process. Supported on systems
with clock(3) (q.v.).

This intrinsic is not fully portable, such as to systems with 32-bit INTEGER types but
supporting times wider than 32 bits. Therefore, the values returned by this intrinsic might

Chapter 8: The GNU Fortran Language 165

be, or become, negative, or numerically less than previous values, during a single run of the
compiled program.

See Section 8.11.9.186 [MClock8 Intrinsic], page 165, for information on a similar intrinsic
that might be portable to more GNU Fortran implementations, though to fewer Fortran
compilers.

If the system does not support clock(3), -1 is returned.

8.11.9.186 MClock8 Intrinsic

MClock8()
MClock8: INTEGER(KIND=2) function.
Intrinsic groups: unix.
Description:

Returns the number of clock ticks since the start of the process. Supported on systems
with clock(3) (q.v.).

Warning: this intrinsic does not increase the range of the timing values over that re-
turned by clock(3). On a system with a 32-bit clock(3), MCLOCK8 will return a 32-bit
value, even though converted to an ‘INTEGER(KIND=2)’ value. That means overflows of
the 32-bit value can still occur. Therefore, the values returned by this intrinsic might be,
or become, negative, or numerically less than previous values, during a single run of the
compiled program.

No Fortran implementations other than GNU Fortran are known to support this intrinsic
at the time of this writing. See Section 8.11.9.185 [MClock Intrinsic|, page 164, for infor-
mation on a similar intrinsic that might be portable to more Fortran compilers, though to
fewer GNU Fortran implementations.

If the system does not support clock(3), -1 is returned.

8.11.9.187 Merge Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Merge’ to use this name for an external procedure.

8.11.9.188 Min Intrinsic

Min(A-1, A-2, ..., A-n)

Min: INTEGER or REAL function, the exact type being the result of cross-promoting the types
of all the arguments.

A: INTEGER or REAL; at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the argument with the smallest value.

See Section 8.11.9.179 [Max Intrinsic|, page 163, for the opposite function.

166 Using and Porting GNU Fortran

8.11.9.189 MinO Intrinsic

Min0(A-1, A-2, ..., A-n)
Min0O: INTEGER(KIND=1) function.
A: INTEGER(KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MIN() that is specific to one type for A. See Section 8.11.9.188 [Min
Intrinsic], page 165.

8.11.9.190 Minl Intrinsic

Min1(A-1, A-2, ..., A-n)
Minl: INTEGER(KIND=1) function.
A: REAL (KIND=1); at least two such arguments must be provided; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of MIN () that is specific to one type for A and a different return type. See
Section 8.11.9.188 [Min Intrinsic|, page 165.

8.11.9.191 MinExponent Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL MinExponent’ to use this name for an external procedure.

8.11.9.192 MinLoc Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL MinLoc’ to use this name for an external procedure.

8.11.9.193 MinVal Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL MinVal’ to use this name for an external procedure.

8.11.9.194 Mod Intrinsic

Mod(A, P)
Mod: INTEGER or REAL function, the exact type being the result of cross-promoting the
types of all the arguments.

A: INTEGER or REAL; scalar; INTENT(IN).
P: INTEGER or REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns remainder calculated as:
A - (INTCA / P) * P)
P must not be zero.

Chapter 8: The GNU Fortran Language 167

8.11.9.195 Modulo Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Modulo’ to use this name for an external procedure.

8.11.9.196 MvBits Intrinsic

CALL MvBits(From, FromPos, Len, TO, ToPos)
From: INTEGER; scalar; INTENT(IN).
FromPos: INTEGER; scalar; INTENT(IN).
Len: INTEGER; scalar; INTENT(IN).
TO: INTEGER with same ‘KIND=" value as for From; scalar; INTENT(INOUT).
ToPos: INTEGER; scalar; INTENT(IN).
Intrinsic groups: mil, £90, vxt.
Description:

Moves Len bits from positions FromPos through ‘FromPos+Len-1’ of From to positions
ToPos through ‘FromPos+Len-1" of TO. The portion of argument TO not affected by the
movement of bits is unchanged. Arguments From and TO are permitted to be the same
numeric storage unit. The values of ‘FromPos+Len’ and ‘ToPos+Len’ must be less than or
equal to ‘BIT_SIZE(From)’.

8.11.9.197 Nearest Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Nearest’ to use this name for an external procedure.

8.11.9.198 NInt Intrinsic

NInt(A)
NlInt: INTEGER(KIND=1) function.
A: REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns A with the fractional portion of its magnitude eliminated by rounding to the
nearest whole number and with its sign preserved, converted to type INTEGER (KIND=1).

If A is type COMPLEY, its real part is rounded and converted.

A fractional portion exactly equal to ‘.5’ is rounded to the whole number that is larger
in magnitude. (Also called “Fortran round”.)

See Section 8.11.9.148 [Int Intrinsic], page 153, for how to convert, truncate to whole
number.

See Section 8.11.9.21 [ANInt Intrinsic], page 118, for how to round to nearest whole
number without converting.

168 Using and Porting GNU Fortran

8.11.9.199 Not Intrinsic

Not (I)
Not: INTEGER function, the ‘KIND=’ value of the type being that of argument I.
I: INTEGER, scalar; INTENT(IN).
Intrinsic groups: mil, £90, vxt.
Description:

Returns value resulting from boolean NOT of each bit in I

8.11.9.200 Or Intrinsic

or(I, J)

Or: INTEGER or LOGICAL function, the exact type being the result of cross-promoting the
types of all the arguments.

I: INTEGER or LOGICAL; scalar; INTENT(IN).
J: INTEGER or LOGICAL; scalar; INTENT(IN).
Intrinsic groups: f2c.

Description:

Returns value resulting from boolean OR of pair of bits in each of I and J.

8.11.9.201 Pack Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Pack’ to use this name for an external procedure.

8.11.9.202 PError Intrinsic

CALL PError (String)
String: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Prints (on the C stderr stream) a newline-terminated error message corresponding to
the last system error. This is prefixed by String, a colon and a space. See perror(3).

8.11.9.203 Precision Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Precision’ to use this name for an external procedure.

8.11.9.204 Present Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Present’ to use this name for an external procedure.

Chapter 8: The GNU Fortran Language 169

8.11.9.205 Product Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Product’ to use this name for an external procedure.

8.11.9.206 Radix Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Radix’ to use this name for an external procedure.

8.11.9.207 Rand Intrinsic

Rand (Flag)
Rand: REAL(KIND=1) function.
Flag: INTEGER; OPTIONAL; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns a uniform quasi-random number between 0 and 1. If Flag is 0, the next number
in sequence is returned; if Flag is 1, the generator is restarted by calling ‘srand (0)’; if Flag
has any other value, it is used as a new seed with srand.

See Section 8.11.9.236 [SRand Intrinsic|, page 176.

Note: As typically implemented (by the routine of the same name in the C library), this
random number generator is a very poor one, though the BSD and GNU libraries provide
a much better implementation than the ‘traditional’ one. On a different system you almost
certainly want to use something better.

8.11.9.208 Random_Number Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Random_Number’ to use this name for an external procedure.

8.11.9.209 Random_Seed Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Random_Seed’ to use this name for an external procedure.

8.11.9.210 Range Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Range’ to use this name for an external procedure.

8.11.9.211 Real Intrinsic

Real (A)

Real: REAL function. The exact type is ‘REAL(KIND=1)’ when argument A is any type other
than COMPLEX, or when it is COMPLEX(KIND=1). When A is any COMPLEX type other than

170 Using and Porting GNU Fortran

COMPLEX (KIND=1), this intrinsic is valid only when used as the argument to REAL(), as
explained below.

A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Converts A to REAL(KIND=1).

Use of REAL() with a COMPLEX argument (other than COMPLEX (KIND=1)) is restricted to
the following case:

REAL (REAL(A))
This expression converts the real part of A to REAL(KIND=1).

See Section 8.11.9.212 [RealPart Intrinsic|, page 170, for information on a GNU Fortran
intrinsic that extracts the real part of an arbitrary COMPLEX value.

See Section 8.11.5 [REAL() and AIMAG() of Complex], page 110, for more information.

8.11.9.212 RealPart Intrinsic

RealPart(Z)
RealPart: REAL function, the ‘KIND=" value of the type being that of argument Z.
Z: COMPLEX; scalar; INTENT(IN).
Intrinsic groups: gnu.
Description:
The real part of Z is returned, without conversion.

Note: The way to do this in standard Fortran 90 is ‘REAL(Z)’. However, when, for
example, Z is COMPLEX (KIND=2), ‘REAL(Z)’ means something different for some compilers
that are not true Fortran 90 compilers but offer some extensions standardized by Fortran
90 (such as the DOUBLE COMPLEX type, also known as COMPLEX (KIND=2)).

The advantage of REALPART () is that, while not necessarily more or less portable than
REAL (), it is more likely to cause a compiler that doesn’t support it to produce a diagnostic
than generate incorrect code.

See Section 8.11.5 [REAL() and AIMAG() of Complex], page 110, for more information.

8.11.9.213 Rename Intrinsic (subroutine)

CALL Rename(Pathl, Path2, Status)
Pathl: CHARACTER, scalar; INTENT(IN).
Path2: CHARACTER, scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Renames the file Pathl to Path2. A null character (‘CHAR(0)’) marks the end of the
names in Pathl and Path2—otherwise, trailing blanks in Pathl and Path2 are ignored. See
rename (2). If the Status argument is supplied, it contains 0 on success or a non-zero error
code upon return.

Chapter 8: The GNU Fortran Language 171

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.126 [Rename
Intrinsic (function)], page 226.

8.11.9.214 Repeat Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Repeat’ to use this name for an external procedure.

8.11.9.215 Reshape Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Reshape’ to use this name for an external procedure.

8.11.9.216 RRSpacing Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL RRSpacing’ to use this name for an external procedure.

8.11.9.217 RShift Intrinsic

RShift (I, Shift)
RShift: INTEGER function, the ‘KIND=" value of the type being that of argument I.
I: INTEGER, scalar; INTENT(IN).
Shift: INTEGER; scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:
Returns I shifted to the right Shift bits.

Although similar to the expression ‘I/(2*xShift)’, there are important differences. For
example, the sign of the result is undefined.

Currently this intrinsic is defined assuming the underlying representation of I is as a
two’s-complement integer. It is unclear at this point whether that definition will apply
when a different representation is involved.

See Section 8.11.9.217 [RShift Intrinsic|, page 171, for the inverse of this function.

See Section 8.11.9.154 [IShft Intrinsic], page 155, for information on a more widely
available right-shifting intrinsic that is also more precisely defined.

8.11.9.218 Scale Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Scale’ to use this name for an external procedure.

8.11.9.219 Scan Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Scan’ to use this name for an external procedure.

172 Using and Porting GNU Fortran

8.11.9.220 Second Intrinsic (function)

Second ()
Second: REAL(KIND=1) function.
Intrinsic groups: unix.
Description:

Returns the process’s runtime in seconds—the same value as the UNIX function etime
returns.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

For information on other intrinsics with the same name: See Section 8.11.9.221 [Second
Intrinsic (subroutine)], page 172.

8.11.9.221 Second Intrinsic (subroutine)

CALL Second (Seconds)
Seconds: REAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Returns the process’s runtime in seconds in Seconds—the same value as the UNIX func-
tion etime returns.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

This routine is known from Cray Fortran. See Section 8.11.9.49 [CPU_Time Intrinsic],
page 125, for a standard equivalent.

For information on other intrinsics with the same name: See Section 8.11.9.220 [Second
Intrinsic (function)], page 172.

8.11.9.222 Selected_Int_Kind Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Selected_Int_Kind’ to use this name for an external procedure.

8.11.9.223 Selected_Real _Kind Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Selected_Real_Kind’ to use this name for an external procedure.

8.11.9.224 Set_Exponent Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Set_Exponent’ to use this name for an external procedure.

Chapter 8: The GNU Fortran Language 173

8.11.9.225 Shape Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Shape’ to use this name for an external procedure.

8.11.9.226 Short Intrinsic

Short (A)
Short: INTEGER(KIND=6) function.
A: INTEGER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns A with the fractional portion of its magnitude truncated and its sign preserved,
converted to type INTEGER (KIND=6).

If A is type COMPLEX, its real part is truncated and converted, and its imaginary part is
disgregarded.

See Section 8.11.9.148 [Int Intrinsic], page 153.

The precise meaning of this intrinsic might change in a future version of the GNU Fortran
language, as more is learned about how it is used.

8.11.9.227 Sign Intrinsic

Sign(A, B)

Sign: INTEGER or REAL function, the exact type being the result of cross-promoting the
types of all the arguments.

A: INTEGER or REAL; scalar; INTENT(IN).
B: INTEGER or REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns ‘ABS(A)*s’, where s is +1 if ‘B.GE.0’, -1 otherwise.

See Section 8.11.9.2 [Abs Intrinsic], page 113, for the function that returns the magnitude
of a value.

8.11.9.228 Signal Intrinsic (subroutine)

CALL Signal (Number, Handler, Status)
Number: INTEGER; scalar; INTENT(IN).

Handler: Signal handler (INTEGER FUNCTION or SUBROUTINE) or dummy/global
INTEGER (KIND=1) scalar.

Status: INTEGER(KIND=7); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.

Description:

174 Using and Porting GNU Fortran

If Handler is a an EXTERNAL routine, arranges for it to be invoked with a single integer
argument (of system-dependent length) when signal Number occurs. If Handler is an in-
teger, it can be used to turn off handling of signal Number or revert to its default action.
See signal(2).

Note that Handler will be called using C conventions, so the value of its argument in
Fortran terms Fortran terms is obtained by applying %LOC() (or LOC()) to it.

The value returned by signal(2) is written to Status, if that argument is supplied.
Otherwise the return value is ignored.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

Warning: Use of the 1ibf2c¢ run-time library function ‘signal_’ directly (such as via
‘EXTERNAL SIGNAL’) requires use of the %VAL() construct to pass an INTEGER value (such as
‘SIG_IGN’ or ‘SIG_DFL’) for the Handler argument.

However, while ‘CALL SIGNAL (signum, %VAL(SIG_IGN))’ works when ‘SIGNAL’ is treated
as an external procedure (and resolves, at link time, to 1ibf2c’s ‘signal_’ routine), this
construct is not valid when ‘SIGNAL’ is recognized as the intrinsic of that name.

Therefore, for maximum portability and reliability, code such references to the ‘SIGNAL’
facility as follows:
INTRINSIC SIGNAL

CALL SIGNAL(signum, SIG_IGN)

g77 will compile such a call correctly, while other compilers will generally either do so
as well or reject the ‘INTRINSIC SIGNAL’ statement via a diagnostic, allowing you to take
appropriate action.

For information on other intrinsics with the same name: See Section 10.5.2.128 [Signal
Intrinsic (function)], page 226.

8.11.9.229 Sin Intrinsic

Sin(X)
Sin: REAL or COMPLEX function, the exact type being that of argument X.
X: REAL or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the sine of X, an angle measured in radians.

See Section 8.11.9.23 [ASin Intrinsic], page 118, for the inverse of this function.

8.11.9.230 SinH Intrinsic

SinH(X)
SinH: REAL function, the ‘KIND=" value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the hyperbolic sine of X.

Chapter 8: The GNU Fortran Language 175

8.11.9.231 Sleep Intrinsic

CALL Sleep(Seconds)
Seconds: INTEGER(KIND=1); scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Causes the process to pause for Seconds seconds. See sleep(2).

8.11.9.232 Sngl Intrinsic

Sngl (A)
Sngl: REAL(KIND=1) function.
A: REAL (KIND=2); scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Archaic form of REAL() that is specific to one type for A. See Section 8.11.9.211 [Real
Intrinsic|, page 169.

8.11.9.233 Spacing Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Spacing’ to use this name for an external procedure.

8.11.9.234 Spread Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Spread’ to use this name for an external procedure.

8.11.9.235 SqRt Intrinsic

SqRt (X)
SqRt: REAL or COMPLEX function, the exact type being that of argument X.
X: REAL or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:
Returns the square root of X, which must not be negative.

To calculate and represent the square root of a negative number, complex arithmetic
must be used. For example, ‘SQRT (COMPLEX(X))’.

The inverse of this function is ‘SQRT(X) * SQRT(X)’.

176 Using and Porting GNU Fortran

8.11.9.236 SRand Intrinsic

CALL SRand(Seed)
Seed: INTEGER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Reinitialises the generator with the seed in Seed. See Section 8.11.9.152 [IRand Intrinsic],
page 154. See Section 8.11.9.207 [Rand Intrinsic|, page 169.

8.11.9.237 Stat Intrinsic (subroutine)

CALL Stat(File, SArray, Status)
File: CHARACTER; scalar; INTENT(IN).
SArray: INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Obtains data about the given file File and places them in the array SArray. A null
character (‘CHAR(0)’) marks the end of the name in File—otherwise, trailing blanks in File
are ignored. The values in this array are extracted from the stat structure as returned by
fstat(2) q.v., as follows:

1. Device ID

Inode number

File mode

Number of links

Owner’s uid

Owner’s gid

ID of device containing directory entry for file (0 if not available)
File size (bytes)

Last access time

© XN W

—_
e

Last modification time

—_
—

. Last file status change time
Preferred I/0 block size (-1 if not available)
Number of blocks allocated (-1 if not available)

—_ =
w N

Not all these elements are relevant on all systems. If an element is not relevant, it is
returned as 0.

If the Status argument is supplied, it contains 0 on success or a non-zero error code upon
return.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 8.11.9.238 [Stat
Intrinsic (function)], page 177.

Chapter 8: The GNU Fortran Language 177

8.11.9.238 Stat Intrinsic (function)

Stat (File, SArray)
Stat: INTEGER(KIND=1) function.
File: CHARACTER; scalar; INTENT(IN).
SArray: INTEGER(KIND=1); DIMENSION(13); INTENT(OUT).
Intrinsic groups: unix.
Description:

Obtains data about the given file File and places them in the array SArray. A null
character (‘CHAR(0)’) marks the end of the name in File—otherwise, trailing blanks in File
are ignored. The values in this array are extracted from the stat structure as returned by
fstat(2) q.v., as follows:

1. Device ID

Inode number

File mode

Number of links

Owner’s uid

Owner’s gid

ID of device containing directory entry for file (0 if not available)
File size (bytes)

Last access time

© 0N W

—_
e

Last modification time

—_
—_

. Last file status change time
Preferred I/0 block size (-1 if not available)
Number of blocks allocated (-1 if not available)

—_ =
W

Not all these elements are relevant on all systems. If an element is not relevant, it is
returned as 0.

Returns 0 on success or a non-zero error code.

For information on other intrinsics with the same name: See Section 8.11.9.237 [Stat
Intrinsic (subroutine)], page 176.

8.11.9.239 Sum Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Sum’ to use this name for an external procedure.

8.11.9.240 SymLnk Intrinsic (subroutine)

CALL SymLnk(Pathl, Path2, Status)
Pathl: CHARACTER, scalar; INTENT(IN).
Path2: CHARACTER, scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).

178 Using and Porting GNU Fortran

Intrinsic groups: unix.
Description:

Makes a symbolic link from file Pathl to Path2. A null character (‘CHAR(0)’) marks the
end of the names in Pathl and Path2—otherwise, trailing blanks in Pathl and Path2 are
ignored. If the Status argument is supplied, it contains 0 on success or a non-zero error
code upon return (ENOSYS if the system does not provide symlink(2)).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.131 [SymLnk
Intrinsic (function)], page 228.

8.11.9.241 System Intrinsic (subroutine)

CALL System(Command, Status)
Command: CHARACTER, scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Passes the command Command to a shell (see system(3)). If argument Status is present,
it contains the value returned by system(3), presumably 0 if the shell command succeeded.
Note that which shell is used to invoke the command is system-dependent and environment-
dependent.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.132 [System
Intrinsic (function)], page 228.

8.11.9.242 System_Clock Intrinsic

CALL System_Clock(Count, Rate, Max)

Count: INTEGER(KIND=1); scalar; INTENT(OUT).
Rate: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Max: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: £90.
Description:

Returns in Count the current value of the system clock; this is the value returned by the
UNIX function times(2) in this implementation, but isn’t in general. Rate is the number

of clock ticks per second and Max is the maximum value this can take, which isn’t very
useful in this implementation since it’s just the maximum C unsigned int value.

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

Chapter 8: The GNU Fortran Language

8.11.9.243 Tan Intrinsic

Tan(X)
Tan: REAL function, the ‘KIND=" value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the tangent of X, an angle measured in radians.

See Section 8.11.9.25 [ATan Intrinsic|, page 118, for the inverse of this function.

8.11.9.244 TanH Intrinsic

TanH(X)
TanH: REAL function, the ‘KIND=’ value of the type being that of argument X.
X: REAL; scalar; INTENT(IN).
Intrinsic groups: (standard FORTRAN 77).
Description:

Returns the hyperbolic tangent of X.

8.11.9.245 Time Intrinsic (UNIX)

Time ()
Time: INTEGER(KIND=1) function.
Intrinsic groups: unix.

Description:

179

Returns the current time encoded as an integer (in the manner of the UNIX function

time(3)). This value is suitable for passing to CTIME, GMTIME, and LTIME.

This intrinsic is not fully portable, such as to systems with 32-bit INTEGER types but
supporting times wider than 32 bits. Therefore, the values returned by this intrinsic might
be, or become, negative, or numerically less than previous values, during a single run of the

compiled program.

See Section 8.11.9.246 [Time8 Intrinsic|, page 179, for information on a similar intrinsic
that might be portable to more GNU Fortran implementations, though to fewer Fortran

compilers.

For information on other intrinsics with the same name: See Section 10.5.2.134 [Time

Intrinsic (VXT)], page 229.

8.11.9.246 Time8 Intrinsic

Time8()
Time8: INTEGER(KIND=2) function.
Intrinsic groups: unix.

Description:

180 Using and Porting GNU Fortran

Returns the current time encoded as a long integer (in the manner of the UNIX function
time(3)). This value is suitable for passing to CTIME, GMTIME, and LTIME.

Warning: this intrinsic does not increase the range of the timing values over that re-
turned by time(3). On a system with a 32-bit time (3), TIME8 will return a 32-bit value,
even though converted to an ‘INTEGER(KIND=2)’ value. That means overflows of the 32-bit
value can still occur. Therefore, the values returned by this intrinsic might be, or become,
negative, or numerically less than previous values, during a single run of the compiled
program.

No Fortran implementations other than GNU Fortran are known to support this intrinsic
at the time of this writing. See Section 8.11.9.245 [Time Intrinsic (UNIX)], page 179, for
information on a similar intrinsic that might be portable to more Fortran compilers, though
to fewer GNU Fortran implementations.

8.11.9.247 Tiny Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Tiny’ to use this name for an external procedure.

8.11.9.248 Transfer Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Transfer’ to use this name for an external procedure.

8.11.9.249 Transpose Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Transpose’ to use this name for an external procedure.

8.11.9.250 Trim Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Trim’ to use this name for an external procedure.

8.11.9.251 TtyNam Intrinsic (subroutine)

CALL TtyNam(Unit, Name)
Unit: INTEGER; scalar; INTENT(IN).
Name: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Sets Name to the name of the terminal device open on logical unit Unit or to a blank
string if Unit is not connected to a terminal.

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine.

For information on other intrinsics with the same name: See Section 8.11.9.252 [TtyNam
Intrinsic (function)], page 181.

Chapter 8: The GNU Fortran Language 181

8.11.9.252 TtyNam Intrinsic (function)

TtyNam(Unit)
TtyNam: CHARACTER* (*) function.
Unit: INTEGER; scalar; INTENT(IN).
Intrinsic groups: unix.
Description:

Returns the name of the terminal device open on logical unit Unit or a blank string if
Unit is not connected to a terminal.

For information on other intrinsics with the same name: See Section 8.11.9.251 [TtyNam
Intrinsic (subroutine)], page 180.

8.11.9.253 UBound Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL UBound’ to use this name for an external procedure.

8.11.9.254 UMask Intrinsic (subroutine)

CALL UMask(Mask, OId)
Mask: INTEGER; scalar; INTENT(IN).
Old: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Sets the file creation mask to Mask and returns the old value in argument OId if it is
supplied. See umask(2).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine.

For information on other intrinsics with the same name: See Section 10.5.2.135 [UMask
Intrinsic (function)], page 229.

8.11.9.255 Unlink Intrinsic (subroutine)

CALL Unlink(File, Status)
File: CHARACTER; scalar; INTENT(IN).
Status: INTEGER(KIND=1); OPTIONAL; scalar; INTENT(OUT).
Intrinsic groups: unix.
Description:

Unlink the file File. A null character (‘CHAR(0)’) marks the end of the name in File—
otherwise, trailing blanks in File are ignored. If the Status argument is supplied, it contains
0 on success or a non-zero error code upon return. See unlink(2).

Some non-GNU implementations of Fortran provide this intrinsic as only a function, not
as a subroutine, or do not support the (optional) Status argument.

For information on other intrinsics with the same name: See Section 10.5.2.136 [Unlink
Intrinsic (function)], page 229.

182 Using and Porting GNU Fortran

8.11.9.256 Unpack Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Unpack’ to use this name for an external procedure.

8.11.9.257 Verify Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL Verify’ to use this name for an external procedure.

8.11.9.258 XOr Intrinsic

X0r (I, J)

XOr: INTEGER or LOGICAL function, the exact type being the result of cross-promoting the
types of all the arguments.

I: INTEGER or LOGICAL; scalar; INTENT(IN).
J: INTEGER or LOGICAL; scalar; INTENT(IN).
Intrinsic groups: f2c.

Description:

Returns value resulting from boolean exclusive-OR of pair of bits in each of I and J.

8.11.9.259 ZAbs Intrinsic

ZAbs (A)
ZAbs: REAL(KIND=2) function.
A: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:

Archaic form of ABS() that is specific to one type for A. See Section 8.11.9.2 [Abs
Intrinsic], page 113.

8.11.9.260 ZCos Intrinsic

ZCos (X)
ZCos: COMPLEX (KIND=2) function.
X: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:

Archaic form of COS() that is specific to one type for X. See Section 8.11.9.46 [Cos
Intrinsic|, page 125.

Chapter 8: The GNU Fortran Language 183

8.11.9.261 ZExp Intrinsic

ZExp (X)
ZExp: COMPLEX (KIND=2) function.
X: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:

Archaic form of EXP() that is specific to one type for X. See Section 8.11.9.99 [Exp
Intrinsic|, page 138.

8.11.9.262 ZLog Intrinsic

ZLog(X)
ZLog: COMPLEX (KIND=2) function.
X: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:

Archaic form of LOG() that is specific to one type for X. See Section 8.11.9.170 [Log
Intrinsic], page 160.

8.11.9.263 ZSin Intrinsic

Z3in(X)
ZSin: COMPLEX (KIND=2) function.
X: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:

Archaic form of SIN() that is specific to one type for X. See Section 8.11.9.229 [Sin
Intrinsic|, page 174.

8.11.9.264 ZSqRt Intrinsic

ZSqRt (X)
ZSqRt: COMPLEX (KIND=2) function.
X: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c.
Description:

Archaic form of SQRT() that is specific to one type for X. See Section 8.11.9.235 [SqRt
Intrinsic|, page 175.

184 Using and Porting GNU Fortran

8.12 Scope and Classes of Symbolic Names

(The following information augments or overrides the information in Chapter 18 of ANSI
X3.9-1978 FORTRAN 77 in specifying the GNU Fortran language. Chapter 18 of that
document otherwise serves as the basis for the relevant aspects of GNU Fortran.)

8.12.1 Underscores in Symbol Names

Underscores (‘_’) are accepted in symbol names after the first character (which must be
a letter).

8.13 1/0O

A dollar sign at the end of an output format specification suppresses the newline at the
end of the output.

Edit descriptors in FORMAT statements may contain compile-time INTEGER constant ex-
pressions in angle brackets, such as

10 FORMAT (I<WIDTH>)
The OPEN specifier NAME= is equivalent to FILE=.
These Fortran 90 features are supported:

e The 0 and Z edit descriptors are supported for I/O of integers in octal and hexadecimal
formats, respectively.

e The FILE= specifier may be omitted in an OPEN statement if STATUS=’>SCRATCH’ is
supplied. The STATUS="REPLACE’ specifier is supported.

8.14 Fortran 90 Features

For convenience this section collects a list (probably incomplete) of the Fortran 90 fea-
tures supported by the GNU Fortran language, even if they are documented elsewhere. See
Section 8.6 [Characters, Lines, and Execution Sequence|, page 91, for information on addi-
tional fixed source form lexical issues. Further, the free source form is supported through
the ‘~ffree-form’ option. Other Fortran 90 features can be turned on by the ‘-££90’ op-
tion; see Section 9.7 [Fortran 90], page 194. For information on the Fortran 90 intrinsics
available, see Section 8.11.9 [Table of Intrinsic Functions], page 112.

Automatic arrays in procedures

Character assignments
In character assignments, the variable being assigned may occur on the right
hand side of the assignment.

Character strings
Strings may have zero length and substrings of character constants are permit-
ted. Character constants may be enclosed in double quotes (") as well as single
quotes. See Section 8.7.4 [Character Type|, page 101.

Construct names
(Symbolic tags on blocks.) See Section 8.10.3 [Construct Names|, page 104.

Chapter 8: The GNU Fortran Language 185

CYCLE and EXIT
See Section 8.10.4 [The CYCLE and EXIT Statements|, page 104.

DOUBLE COMPLEX
See Section 8.9.2 [DOUBLE COMPLEX Statement], page 103.

DO WHILE See Section 8.10.1 [DO WHILE], page 103.

END decoration
See Section 8.6.4 [Statements|, page 93.

END DO See Section 8.10.2 [END DO], page 103.
KIND

IMPLICIT NONE
INCLUDE statements
See Section 8.6.7 [INCLUDE], page 94.

List-directed and namelist I/O on internal files

Binary, octal and hexadecimal constants
These are supported more generally than required by Fortran 90. See Sec-
tion 8.7.3 [Integer Type], page 101.

‘0’ and ‘Z’ edit descriptors
NAMELIST See Section 8.9.1 [NAMELIST], page 103.

OPEN specifiers
STATUS=’REPLACE’ is supported. The FILE= specifier may be omitted in an
OPEN statement if STATUS=’SCRATCH’ is supplied.

FORMAT edit descriptors
The Z edit descriptor is supported.

Relational operators
The operators <, <=, ==, /=, > and >= may be used instead of .LT., .LE., .EQ.,
.NE., .GT. and .GE. respectively.

SELECT CASE
Not fully implemented. See Section 15.3.5 [SELECT CASE on CHARACTER Type],
page 279.

Specification statements

A limited subset of the Fortran 90 syntax and semantics for variable declarations
is supported, including KIND. See Section 8.7.1.3 [Kind Notation], page 98.
(KIND is of limited usefulness in the absence of the KIND-related intrinsics, since
these intrinsics permit writing more widely portable code.) An example of
supported KIND usage is:

INTEGER (KIND=1) :: F00O=1, BAR=2

CHARACTER (LEN=3) FOO

PARAMETER and DIMENSION attributes aren’t supported.

186 Using and Porting GNU Fortran

Chapter 9: Other Dialects 187

9 Other Dialects

GNU Fortran supports a variety of features that are not considered part of the GNU For-
tran language itself, but are representative of various dialects of Fortran that g77 supports
in whole or in part.

Any of the features listed below might be disallowed by g77 unless some command-line
option is specified. Currently, some of the features are accepted using the default invocation
of g77, but that might change in the future.

Note: This portion of the documentation definitely needs a lot of work!

9.1 Source Form

GNU Fortran accepts programs written in either fixed form or free form.

Fixed form corresponds to ANSI FORTRAN 77 (plus popular extensions, such as allow-
ing tabs) and Fortran 90’s fixed form.

Free form corresponds to Fortran 90’s free form (though possibly not entirely up-to-date,
and without complaining about some things that for which Fortran 90 requires diagnostics,
such as the spaces in the constant in ‘R =3 . 17).

The way a Fortran compiler views source files depends entirely on the implementation
choices made for the compiler, since those choices are explicitly left to the implementation
by the published Fortran standards. GNU Fortran currently tries to be somewhat like a
few popular compilers (f2¢, Digital (“DEC”) Fortran, and so on).

This section describes how g77 interprets source lines.

9.1.1 Carriage Returns

Carriage returns (‘\r’) in source lines are ignored. This is somewhat different from f2c,
which seems to treat them as spaces outside character/Hollerith constants, and encodes
them as ‘\r’ inside such constants.

9.1.2 Tabs

A source line with a character anywhere in it is treated as entirely significant—
however long it is—instead of ending in column 72 (for fixed-form source) or 132 (for
free-form source). This also is different from f2c, which encodes tabs as ‘\t’ (the ASCII
character) inside character and Hollerith constants, but nevertheless seems to treat
the column position as if it had been affected by the canonical tab positioning.

g77 effectively translates tabs to the appropriate number of spaces (a la the default
for the UNIX expand command) before doing any other processing, other than (currently)
noting whether a tab was found on a line and using this information to decide how to
interpret the length of the line and continued constants.

188 Using and Porting GNU Fortran

9.1.3 Short Lines

Source lines shorter than the applicable fixed-form length are treated as if they were
padded with spaces to that length. (None of this is relevant to source files written in free
form.)

This affects only continued character and Hollerith constants, and is a different interpre-
tation than provided by some other popular compilers (although a bit more consistent with
the traditional punched-card basis of Fortran and the way the Fortran standard expressed
fixed source form).

g77 might someday offer an option to warn about cases where differences might be seen
as a result of this treatment, and perhaps an option to specify the alternate behavior as
well.

Note that this padding cannot apply to lines that are effectively of infinite length—
such lines are specified using command-line options like ‘-ffixed-line-length-none’, for
example.

9.1.4 Long Lines

Source lines longer than the applicable length are truncated to that length. Currently,
g77 does not warn if the truncated characters are not spaces, to accommodate existing code
written for systems that treated truncated text as commentary (especially in columns 73
through 80).

See Section 5.4 [Options Controlling Fortran Dialect], page 38, for information on the
‘-ffixed-line-length-n’ option, which can be used to set the line length applicable to
fixed-form source files.

9.1.5 Ampersand Continuation Line

A ‘&%’ in column 1 of fixed-form source denotes an arbitrary-length continuation line,
imitating the behavior of f2c.

9.2 Trailing Comment
g77 supports use of ‘/*’ to start a trailing comment. In the GNU Fortran language, ‘!’
is used for this purpose.

‘/*’ is not in the GNU Fortran language because the use of ‘/*’ in a program might
suggest to some readers that a block, not trailing, comment is started (and thus ended by
¢/’ not end of line), since that is the meaning of ‘/*” in C.

Also, such readers might think they can use ‘//’ to start a trailing comment as an
alternative to ‘/*’, but ‘//’ already denotes concatenation, and such a “comment” might
actually result in a program that compiles without error (though it would likely behave
incorrectly).

Chapter 9: Other Dialects 189

9.3 Debug Line

Use of ‘D’ or ‘d’ as the first character (column 1) of a source line denotes a debug line.

In turn, a debug line is treated as either a comment line or a normal line, depending on
whether debug lines are enabled.

When treated as a comment line, a line beginning with ‘D’ or ‘d’ is treated as if it the
first character was ‘C’ or ‘c’, respectively. When treated as a normal line, such a line is
treated as if the first character was (space).

(Currently, g77 provides no means for treating debug lines as normal lines.)

9.4 Dollar Signs in Symbol Names

Dollar signs (‘$’) are allowed in symbol names (after the first character) when the
‘~fdollar-ok’ option is specified.

9.5 Case Sensitivity

GNU Fortran offers the programmer way too much flexibility in deciding how source files
are to be treated vis-a-vis uppercase and lowercase characters. There are 66 useful settings
that affect case sensitivity, plus 10 settings that are nearly useless, with the remaining 116
settings being either redundant or useless.

None of these settings have any effect on the contents of comments (the text after a ‘c’
or ‘C’ in Column 1, for example) or of character or Hollerith constants. Note that things
like the ‘E’ in the statement ‘CALL FOO(3.2E10)’ and the ‘TO’ in ‘ASSIGN 10 TO LAB’ are
considered built-in keywords, and so are affected by these settings.

Low-level switches are identified in this section as follows:

A Source Case Conversion:

0 Preserve (see Note 1)

1 Convert to Upper Case

2 Convert to Lower Case
B Built-in Keyword Matching:

0 Match Any Case (per-character basis)

1 Match Upper Case Only

2 Match Lower Case Only

3 Match InitialCaps Only (see tables for spellings)
C Built-in Intrinsic Matching;:

0 Match Any Case (per-character basis)

1 Match Upper Case Only

2 Match Lower Case Only

3 Match InitialCaps Only (see tables for spellings)
D User-defined Symbol Possibilities (warnings only):

0 Allow Any Case (per-character basis)

190 Using and Porting GNU Fortran

1 Allow Upper Case Only
2 Allow Lower Case Only
3 Allow InitialCaps Only (see Note 2)

Note 1: g77 eventually will support NAMELIST in a manner that is consistent with these
source switches—in the sense that input will be expected to meet the same requirements as
source code in terms of matching symbol names and keywords (for the exponent letters).

Currently, however, NAMELIST is supported by 1ibg2c, which uppercases NAMELIST input
and symbol names for matching. This means not only that NAMELIST output currently shows
symbol (and keyword) names in uppercase even if lower-case source conversion (option A2) is
selected, but that NAMELIST cannot be adequately supported when source case preservation
(option AO0) is selected.

If AO is selected, a warning message will be output for each NAMELIST statement to this
effect. The behavior of the program is undefined at run time if two or more symbol names
appear in a given NAMELIST such that the names are identical when converted to upper
case (e.g. ‘NAMELIST /X/ VAR, Var, var’). For complete and total elegance, perhaps there
should be a warning when option A2 is selected, since the output of NAMELIST is currently
in uppercase but will someday be lowercase (when a 1ibg77 is written), but that seems to
be overkill for a product in beta test.

Note 2: Rules for InitialCaps names are:
— Must be a single uppercase letter, or

— Must start with an uppercase letter and contain at least one lowercase letter.

So ‘A’ ‘Ab’, ‘ABc’, ‘AbC’, and ‘Abc’ are valid InitialCaps names, but ‘AB’, ‘A2’ and ‘ABC’ are
not. Note that most, but not all, built-in names meet these requirements—the exceptions
are some of the two-letter format specifiers, such as BN and BZ.

Here are the names of the corresponding command-line options:

AO: -fsource-case-preserve
Al: -fsource-case-upper
A2: -fsource-case-lower

BO: -fmatch-case-any

Bl: -fmatch-case-upper
B2: -fmatch-case-lower
B3: -fmatch-case-initcap

CO: -fintrin-case-any

Cl: -fintrin-case-upper
C2: -fintrin-case-lower
C3: —-fintrin-case-initcap

DO: -fsymbol-case-any
D1: -fsymbol-case-upper
D2: -fsymbol-case-lower
D3: -fsymbol-case-initcap
Useful combinations of the above settings, along with abbreviated option names that set
some of these combinations all at once:

Chapter 9: Other Dialects 191

: AO-- BO--- CO--- DO-——- -fcase-preserve

0N OIS WN R
=
o
|
o
S
i
|
N
[y
|
>
S
i
I
I

22: AO-- B-1-- C-1-- D-1-- -fcase-strict-upper

43: AO-- B--2- (C--2- D--2- -fcase-strict-lower

192 Using and Porting GNU Fortran

50: AO-- B---3 CO--- D-1--
51: A0O-- B---3 CO--- D--2-
52: A0O-- B---3 CO--- D---3

53: A0-- B---3 C-1-- DO---
54: AO-- B---3 C-1-- D-1--
55: AO-- B---3 C-1-- D--2-
56: AO-- B---3 C-1-- D---3
57: AO-- B---3 C--2- DO---
58: AO-- B---3 C--2- D-1--
59: AO-- B---3 C--2- D--2-
60: AO-- B---3 C--2- D---3
61: AO-- B---3 C---3 DO---
62: AO-- B---3 C---3 D-1--
63: A0O-- B---3 C---3 D--2-

64: AO-- B---3 C---3 D---3 -fcase-initcap
65: A-1- BO1-- CO1-- DO1-- -fcase-upper
66: A--2 B0-2- CO-2- DO-2- -fcase-lower

Number 22 is the “strict” ANSI FORTRAN 77 model wherein all input (except com-
ments, character constants, and Hollerith strings) must be entered in uppercase. Use
‘~-fcase-strict-upper’ to specify this combination.

Number 43 is like Number 22 except all input must be lowercase. Use
‘~-fcase-strict-lower’ to specify this combination.

Number 65 is the “classic’ ANSI FORTRAN 77 model as implemented on many non-
UNIX machines whereby all the source is translated to uppercase. Use ‘~fcase-upper’ to
specify this combination.

Number 66 is the “canonical” UNIX model whereby all the source is translated to low-
ercase. Use ‘-fcase-lower’ to specify this combination.
There are a few nearly useless combinations:
67: A-1- BO1-- CO1-- D--2-
68: A-1- BO1-- CO1-- D---3
69: A-1- BO1-- C--23 DO1--
70: A-1- BO1-- (C--23 D--2-
71: A-1- BO1-- (C--23 D---3
72: A--2 BO1-- CO-2- D-1--
73: A--2 BO1-- C0-2- D---3
74: A--2 BO1-- C-1-3 DO-2-
75: A--2 BO1-- C-1-3 D-1--
76: A--2 BO1-- (C-1-3 D---3
The above allow some programs to be compiled but with restrictions that make most
useful programs impossible: Numbers 67 and 72 warn about any user-defined symbol names
(such as ‘SUBROUTINE FOO’); Numbers 68 and 73 warn about any user-defined symbol names
longer than one character that don’t have at least one non-alphabetic character after the
first; Numbers 69 and 74 disallow any references to intrinsics; and Numbers 70, 71, 75, and
76 are combinations of the restrictions in 67+69, 68+69, 72+74, and 73+74, respectively.

All redundant combinations are shown in the above tables anyplace where more than
one setting is shown for a low-level switch. For example, ‘BO-2-’ means either setting 0 or

Chapter 9: Other Dialects 193

2 is valid for switch B. The “proper” setting in such a case is the one that copies the setting
of switch A—any other setting might slightly reduce the speed of the compiler, though
possibly to an unmeasurable extent.

All remaining combinations are useless in that they prevent successful compilation of
non-null source files (source files with something other than comments).

9.6 VXT Fortran

g77 supports certain constructs that have different meanings in VXT Fortran than they
do in the GNU Fortran language.

Generally, this manual uses the invented term VXT Fortran to refer VAX FORTRAN
(circa v4). That compiler offered many popular features, though not necessarily those
that are specific to the VAX processor architecture, the VMS operating system, or Digital
Equipment Corporation’s Fortran product line. (VAX and VMS probably are trademarks
of Digital Equipment Corporation.)

An extension offered by a Digital Fortran product that also is offered by several other
Fortran products for different kinds of systems is probably going to be considered for inclu-
sion in g77 someday, and is considered a VXT Fortran feature.

The ‘-fvxt’ option generally specifies that, where the meaning of a construct is ambigu-
ous (means one thing in GNU Fortran and another in VXT Fortran), the VXT Fortran
meaning is to be assumed.

9.6.1 Meaning of Double Quote

g77 treats double-quote (‘"’) as beginning an octal constant of INTEGER(KIND=1) type
when the ‘-fvxt’ option is specified. The form of this octal constant is

"octal-digits
where octal-digits is a nonempty string of characters in the set ‘01234567’.
For example, the ‘~fvxt’ option permits this:
PRINT *, "20
END
The above program would print the value ‘16’.
See Section 8.7.3 [Integer Type], page 101, for information on the preferred construct for
integer constants specified using GNU Fortran’s octal notation.
(In the GNU Fortran language, the double-quote character (‘"’) delimits a character

constant just as does apostrophe (‘’’). There is no way to allow both constructs in the
general case, since statements like ‘PRINT *,"2000 !comment?"’ would be ambiguous.)

9.6.2 Meaning of Exclamation Point in Column 6

g77 treats an exclamation point (‘!’) in column 6 of a fixed-form source file as a continu-
ation character rather than as the beginning of a comment (as it does in any other column)
when the ‘-fvxt’ option is specified.

The following program, when run, prints a message indicating whether it is interpreted
according to GNU Fortran (and Fortran 90) rules or VXT Fortran rules:

194 Using and Porting GNU Fortran

C234567 (This line begins in column 1.)
I=20
11
IF (I.EQ.0) PRINT *, ’ I am a VXT Fortran program’
IF (I.EQ.1) PRINT *, > I am a Fortran 90 program’
IF (I.LT.0 .OR. I.GT.1) PRINT *, > I am a HAL 9000 computer’
END

(In the GNU Fortran and Fortran 90 languages, exclamation point is a valid character

and, unlike space (SPC)) or zero (‘0’), marks a line as a continuation line when it appears
in column 6.)

9.7 Fortran 90

The GNU Fortran language includes a number of features that are part of Fortran 90,
even when the ‘-ff£90’ option is not specified. The features enabled by ‘-ff90’ are intended
to be those that, when ‘~££90’ is not specified, would have another meaning to g77—usually
meaning something invalid in the GNU Fortran language.

So, the purpose of ‘~££90’ is not to specify whether g77 is to gratuitously reject Fortran
90 constructs. The ‘-pedantic’ option specified with ‘-fno-£90’ is intended to do that,
although its implementation is certainly incomplete at this point.

When ‘-££90’ is specified:
e The type of ‘REAL(expr)’ and ‘AIMAG(expr)’, where expr is COMPLEX type, is the same
type as the real part of expr.

For example, assuming ‘Z’ is type COMPLEX (KIND=2), ‘REAL(Z)’ would return a value
of type REAL(KIND=2), not of type REAL (KIND=1), since ‘-ff90’ is specified.

9.8 Pedantic Compilation

The ‘~fpedantic’ command-line option specifies that g77 is to warn about code that is
not standard-conforming. This is useful for finding some extensions g77 accepts that other
compilers might not accept. (Note that the ‘-pedantic’ and ‘-pedantic-errors’ options
always imply ‘-~fpedantic’.)

With ‘~fno-£90’ in force, ANSI FORTRAN 77 is used as the standard for conforming
code. With ‘-££90’ in force, Fortran 90 is used.

The constructs for which g77 issues diagnostics when ‘-fpedantic’ and ‘-fno-£90’ are
in force are:

e Automatic arrays, as in

SUBROUTINE X(N)
REAL A(N)

where ‘A’ is not listed in any ENTRY statement, and thus is not a dummy argument.
e The commas in ‘READ (5), I’ and ‘WRITE (10), J’.

These commas are disallowed by FORTRAN 77, but, while strictly superfluous, are
syntactically elegant, especially given that commas are required in statements such as

Chapter 9: Other Dialects 195

‘READ 99, I’ and ‘PRINT *, J’. Many compilers permit the superfluous commas for this
reason.

e DOUBLE COMPLEZX, either explicitly or implicitly.

An explicit use of this type is via a DOUBLE COMPLEX or IMPLICIT DOUBLE COMPLEX
statement, for examples.

An example of an implicit use is the expression ‘C*D’, where ‘C’ is COMPLEX (KIND=1) and
‘D’ is DOUBLE PRECISION. This expression is prohibited by ANSI FORTRAN 77 because
the rules of promotion would suggest that it produce a DOUBLE COMPLEX result—a type
not provided for by that standard.

e Automatic conversion of numeric expressions to INTEGER (KIND=1) in contexts such as:
— Array-reference indexes.
— Alternate-return values.
— Computed GOTO.
— FORMAT run-time expressions (not yet supported).
— Dimension lists in specification statements.
— Numbers for I/O statements (such as ‘READ (UNIT=3.2), I’)
— Sizes of CHARACTER entities in specification statements.
— Kind types in specification entities (a Fortran 90 feature).

— Initial, terminal, and incrementation parameters for implied-DO constructs in DATA
statements.

e Automatic conversion of LOGICAL expressions to INTEGER in contexts such as arithmetic
IF (where COMPLEX expressions are disallowed anyway).

e Zero-size array dimensions, as in:
INTEGER I(10,20,4:2)
e Zero-length CHARACTER entities, as in:
PRINT *, 7’
e Substring operators applied to character constants and named constants, as in:
PRINT *, ’hello’(3:5)
e Null arguments passed to statement function, as in:
PRINT *, F0O0(,3)

e Disagreement among program units regarding whether a given COMMON area is SAVEd
(for targets where program units in a single source file are “glued” together as they
typically are for UNIX development environments).

e Disagreement among program units regarding the size of a named COMMON block.
e Specification statements following first DATA statement.

(In the GNU Fortran language, ‘DATA I/1/’ may be followed by ‘INTEGER J’, but not
‘INTEGER I'. The ‘-fpedantic’ option disallows both of these.)

e Semicolon as statement separator, as in:
CALL F0O; CALL BAR
e Use of ‘&’ in column 1 of fixed-form source (to indicate continuation).

e Use of CHARACTER constants to initialize numeric entities, and vice versa.

196 Using and Porting GNU Fortran

e Expressions having two arithmetic operators in a row, such as ‘Xx-Y’.

If ‘~-fpedantic’ is specified along with ‘-££90°, the following constructs result in diag-
nostics:

e Use of semicolon as a statement separator on a line that has an INCLUDE directive.

9.9 Distensions

The ‘~fugly-*’ command-line options determine whether certain features supported by
VAX FORTRAN and other such compilers, but considered too ugly to be in code that
can be changed to use safer and/or more portable constructs, are accepted. These are
humorously referred to as “distensions”, extensions that just plain look ugly in the harsh
light of day.

9.9.1 Implicit Argument Conversion

The ‘-fno-ugly-args’ option disables passing typeless and Hollerith constants as actual
arguments in procedure invocations. For example:

CALL F0O(4HABCD)
CALL BAR(’123°0)

These constructs can be too easily used to create non-portable code, but are not considered
as “ugly” as others. Further, they are widely used in existing Fortran source code in ways
that often are quite portable. Therefore, they are enabled by default.

9.9.2 Ugly Assumed-Size Arrays

The ‘~fugly-assumed’ option enables the treatment of any array with a final dimension
specified as ‘1’ as an assumed-size array, as if ‘*” had been specified instead.

For example, ‘DIMENSION X(1)’ is treated as if it had read ‘DIMENSION X(x)’ if ‘X’ is
listed as a dummy argument in a preceding SUBROUTINE, FUNCTION, or ENTRY statement in
the same program unit.

Use an explicit lower bound to avoid this interpretation. For example, ‘DIMENSION
X(1:1)’ is never treated as if it had read ‘DIMENSION X(*)’ or ‘DIMENSION X(1:*)’. Nor
is ‘DIMENSION X(2-1)’ affected by this option, since that kind of expression is unlikely to
have been intended to designate an assumed-size array.

This option is used to prevent warnings being issued about apparent out-of-bounds
reference such as ‘X(2) = 99°.

It also prevents the array from being used in contexts that disallow assumed-size arrays,
such as ‘PRINT *,X’. In such cases, a diagnostic is generated and the source file is not
compiled.

The construct affected by this option is used only in old code that pre-exists the
widespread acceptance of adjustable and assumed-size arrays in the Fortran community.

Note: This option does not affect how ‘DIMENSION X(1)’ is treated if ‘X’ is listed as a
dummy argument only after the DIMENSION statement (presumably in an ENTRY statement).
For example, ‘-fugly-assumed’ has no effect on the following program unit:

Chapter 9: Other Dialects 197

SUBROUTINE X
REAL A(1)
RETURN

ENTRY Y(A)
PRINT *, A
END

9.9.3 Ugly Complex Part Extraction

The ‘-fugly-complex’ option enables use of the REAL() and AIMAG() intrinsics with
arguments that are COMPLEX types other than COMPLEX (KIND=1).

With ‘-=££90’ in effect, these intrinsics return the unconverted real and imaginary parts
(respectively) of their argument.

With ‘-fno-f90’ in effect, these intrinsics convert the real and imaginary parts to
REAL (KIND=1), and return the result of that conversion.

Due to this ambiguity, the GNU Fortran language defines these constructs as invalid,

except in the specific case where they are entirely and solely passed as an argument to an
invocation of the REAL() intrinsic. For example,

REAL (REAL(Z))
is permitted even when ‘Z’ is COMPLEX (KIND=2) and ‘-fno-ugly-complex’ is in effect, be-
cause the meaning is clear.

g77 enforces this restriction, unless ‘-fugly-complex’ is specified, in which case the
appropriate interpretation is chosen and no diagnostic is issued.

See Section 22.1 [CMPAMBIG], page 345, for information on how to cope with existing
code with unclear expectations of REAL() and AIMAG() with COMPLEX (KIND=2) arguments.

See Section 8.11.9.212 [RealPart Intrinsic], page 170, for information on the REALPART ()
intrinsic, used to extract the real part of a complex expression without conversion. See Sec-
tion 8.11.9.146 [ImagPart Intrinsic|, page 152, for information on the IMAGPART () intrinsic,
used to extract the imaginary part of a complex expression without conversion.

9.9.4 Ugly Null Arguments

The ‘-fugly-comma’ option enables use of a single trailing comma to mean “pass an
extra trailing null argument” in a list of actual arguments to an external procedure, and
use of an empty list of arguments to such a procedure to mean “pass a single null argument”.

(Null arguments often are used in some procedure-calling schemes to indicate omitted
arguments.)

For example, ‘CALL FOO(,)’ means “pass two null arguments”, rather than “pass one
null argument”. Also, ‘CALL BAR()’ means “pass one null argument”.

This construct is considered “ugly” because it does not provide an elegant way to pass a
single null argument that is syntactically distinct from passing no arguments. That is, this
construct changes the meaning of code that makes no use of the construct.

So, with ‘~fugly-comma’ in force, ‘CALL FOO()’ and ‘I = JFUNC()’ pass a single null
argument, instead of passing no arguments as required by the Fortran 77 and 90 standards.

198 Using and Porting GNU Fortran

Note: Many systems gracefully allow the case where a procedure call passes one extra
argument that the called procedure does not expect.

So, in practice, there might be no difference in the behavior of a program that does ‘CALL
FOO()’ or ‘I = JFUNC()’ and is compiled with ‘~fugly-comma’ in force as compared to its
behavior when compiled with the default, ‘~fno-ugly-comma’, in force, assuming ‘F00’ and
‘JFUNC’ do not expect any arguments to be passed.

9.9.5 Ugly Conversion of Initializers

The constructs disabled by ‘~fno-ugly-init’ are:

e Use of Hollerith and typeless constants in contexts where they set initial (compile-
time) values for variables, arrays, and named constants—that is, DATA and PARAMETER
statements, plus type-declaration statements specifying initial values.

Here are some sample initializations that are disabled by the ‘-fno-ugly-init’ option:

PARAMETER (VAL=’9A304FFE’X)
REAL*8 STRING/SHOUTPUT00/
DATA VAR/4HABCD/

e In the same contexts as above, use of character constants to initialize numeric items
and vice versa (one constant per item).

Here are more sample initializations that are disabled by the ‘~fno-ugly-init’ option:

INTEGER IA
CHARACTER BELL
PARAMETER (IA = ’A’)
PARAMETER (BELL = 7)

e Use of Hollerith and typeless constants on the right-hand side of assignment statements
to numeric types, and in other contexts (such as passing arguments in invocations of
intrinsic procedures and statement functions) that are treated as assignments to known
types (the dummy arguments, in these cases).

Here are sample statements that are disabled by the ‘~fno-ugly-init’ option:
IVAR = 4HABCD
PRINT *, IMAXO(2HAB, 2HBA)

The above constructs, when used, can tend to result in non-portable code. But, they
are widely used in existing Fortran code in ways that often are quite portable. Therefore,
they are enabled by default.

9.9.6 Ugly Integer Conversions

The constructs enabled via ‘-fugly-logint’ are:

e Automatic conversion between INTEGER and LOGICAL as dictated by context (typically
implies nonportable dependencies on how a particular implementation encodes . TRUE.
and .FALSE.).

e Use of a LOGICAL variable in ASSIGN and assigned-GOTO statements.

Chapter 9: Other Dialects 199

The above constructs are disabled by default because use of them tends to lead to non-
portable code. Even existing Fortran code that uses that often turns out to be non-portable,
if not outright buggy.

Some of this is due to differences among implementations as far as how .TRUE. and
.FALSE. are encoded as INTEGER values—Fortran code that assumes a particular coding
is likely to use one of the above constructs, and is also likely to not work correctly on
implementations using different encodings.

See Section 15.5.5 [Equivalence Versus Equality], page 295, for more information.

9.9.7 Ugly Assigned Labels

The ‘-fugly-assign’ option forces g77 to use the same storage for assigned labels as it
would for a normal assignment to the same variable.
For example, consider the following code fragment:
I =23
ASSIGN 10 TO I
Normally, for portability and improved diagnostics, g77 reserves distinct storage for a “sib-

ling” of ‘I’, used only for ASSIGN statements to that variable (along with the corresponding
assigned-GOTO and assigned-FORMAT-I/O statements that reference the variable).

However, some code (that violates the ANSI FORTRAN 77 standard) attempts to copy
assigned labels among variables involved with ASSIGN statements, as in:

ASSIGN 10 TO I
ISTATE(5) =1

J = ISTATE(ICUR)
GOTO J

Such code doesn’t work under g77 unless ‘~fugly-assign’ is specified on the command-
line, ensuring that the value of I referenced in the second line is whatever value g77 uses
to designate statement label ‘10’°, so the value may be copied into the ‘ISTATE’ array, later
retrieved into a variable of the appropriate type (‘J’), and used as the target of an assigned-
GOTO statement.

Note: To avoid subtle program bugs, when ‘-fugly-assign’ is specified, g77 requires
the type of variables specified in assigned-label contexts must be the same type returned
by %LOC(). On many systems, this type is effectively the same as INTEGER (KIND=1), while,
on others, it is effectively the same as INTEGER (KIND=2).

Do not depend on g77 actually writing valid pointers to these variables, however. While
g77 currently chooses that implementation, it might be changed in the future.

See Section 13.12 [Assigned Statement Labels (ASSIGN and GOTO)], page 247, for
implementation details on assigned-statement labels.

200 Using and Porting GNU Fortran

Chapter 10: The GNU Fortran Compiler 201

10 The GNU Fortran Compiler

The GNU Fortran compiler, g77, supports programs written in the GNU Fortran lan-
guage and in some other dialects of Fortran.

Some aspects of how g77 works are universal regardless of dialect, and yet are not
properly part of the GNU Fortran language itself. These are described below.

Note: This portion of the documentation definitely needs a lot of work!

10.1 Compiler Limits

g77, as with GNU tools in general, imposes few arbitrary restrictions on lengths of
identifiers, number of continuation lines, number of external symbols in a program, and so
on.

For example, some other Fortran compiler have an option (such as ‘-N1x’) to increase
the limit on the number of continuation lines. Also, some Fortran compilation systems have
an option (such as ‘-Nxx’) to increase the limit on the number of external symbols.

g77, gcc, and GNU 1d (the GNU linker) have no equivalent options, since they do not
impose arbitrary limits in these areas.

g77 does currently limit the number of dimensions in an array to the same degree as do
the Fortran standards—seven (7). This restriction might be lifted in a future version.

10.2 Run-time Environment Limits

As a portable Fortran implementation, g77 offers its users direct access to, and otherwise
depends upon, the underlying facilities of the system used to build g77, the system on which
g77 itself is used to compile programs, and the system on which the g77-compiled program
is actually run. (For most users, the three systems are of the same type—combination of
operating environment and hardware—often the same physical system.)

The run-time environment for a particular system inevitably imposes some limits on a
program’s use of various system facilities. These limits vary from system to system.

Even when such limits might be well beyond the possibility of being encountered on a
particular system, the g77 run-time environment has certain built-in limits, usually, but
not always, stemming from intrinsics with inherently limited interfaces.

Currently, the g77 run-time environment does not generally offer a less-limiting environ-
ment by augmenting the underlying system’s own environment.

Therefore, code written in the GNU Fortran language, while syntactically and seman-
tically portable, might nevertheless make non-portable assumptions about the run-time
environment—assumptions that prove to be false for some particular environments.

The GNU Fortran language, the g77 compiler and run-time environment, and the g77
documentation do not yet offer comprehensive portable work-arounds for such limits, though
programmers should be able to find their own in specific instances.

Not all of the limitations are described in this document. Some of the known limitations
include:

202 Using and Porting GNU Fortran

10.2.1 Timer Wraparounds

Intrinsics that return values computed from system timers, whether elapsed (wall-clock)
timers, process CPU timers, or other kinds of timers, are prone to experiencing wrap-around
errors (or returning wrapped-around values from successive calls) due to insufficient ranges
offered by the underlying system’s timers.

Some of the symptoms of such behaviors include apparently negative time being com-
puted for a duration, an extremely short amount of time being computed for a long duration,
and an extremely long amount of time being computed for a short duration.

See the following for intrinsics known to have potential problems in these areas on at
least some systems: Section 8.11.9.49 [CPU_Time Intrinsic], page 125, Section 10.5.2.36
[DTime Intrinsic (function)], page 214, Section 8.11.9.91 [DTime Intrinsic (subroutine)],
page 136, Section 8.11.9.97 [ETime Intrinsic (function)], page 137, Section 8.11.9.96
[ETime Intrinsic (subroutine)], page 137, Section 8.11.9.185 [MClock Intrinsic|, page 164,
Section 8.11.9.186 [MClock8 Intrinsic], page 165, Section 10.5.2.127 [Secnds Intrinsic],
page 226, Section 8.11.9.220 [Second Intrinsic (function)], page 172, Section 8.11.9.221
[Second Intrinsic (subroutine)], page 172, Section 8.11.9.242 [System_Clock Intrinsic|,
page 178, Section 8.11.9.245 [Time Intrinsic (UNIX)], page 179, Section 10.5.2.134 [Time
Intrinsic (VXT)], page 229, Section 8.11.9.246 [Time8 Intrinsic|, page 179.

10.2.2 Year 2000 (Y2K) Problems

While the g77 compiler itself is believed to be Year-2000 (Y2K) compliant, some intrinsics
are not, and, potentially, some underlying systems are not, perhaps rendering some Y2K-
compliant intrinsics non-compliant when used on those particular systems.

Fortran code that uses non-Y2K-compliant intrinsics (listed below) is, itself, almost
certainly not compliant, and should be modified to use Y2K-compliant intrinsics instead.

Fortran code that uses no non-Y2K-compliant intrinsics, but which currently is running
on a non-Y2K-compliant system, can be made more Y2K compliant by compiling and
linking it for use on a new Y2K-compliant system, such as a new version of an old, non-
Y2K-compliant, system.

Currently, information on Y2K and related issues is being maintained at
http://wuw.gnu.org/software/year2000-1ist.html.

See the following for intrinsics known to have potential problems in these areas on at
least some systems: Section 10.5.2.24 [Date Intrinsic|, page 212, Section 10.5.2.43 [IDate
Intrinsic (VXT)], page 216.

The 1ibg2c library shipped with any g77 that warns about invocation of a non-Y2K-
compliant intrinsic has renamed the EXTERNAL procedure names of those intrinsics. This is
done so that the 1ibg2c implementations of these intrinsics cannot be directly linked to as
EXTERNAL names (which normally would avoid the non-Y2K-intrinsic warning).

The renamed forms of the EXTERNAL names of these renamed procedures may be linked
to by appending the string ‘_y2kbug’ to the name of the procedure in the source code. For
example:

CHARACTER*20 STR
INTEGER YY, MM, DD

Chapter 10: The GNU Fortran Compiler 203

EXTERNAL DATE_Y2KBUG, VXTIDATE_Y2KBUG
CALL DATE_Y2KBUG (STR)
CALL VXTIDATE_Y2KBUG (MM, DD, YY)

(Note that the EXTERNAL statement is not actually required, since the modified names
are not recognized as intrinsics by the current version of g77. But it is shown in this specific
case, for purposes of illustration.)

The renaming of EXTERNAL procedure names of these intrinsics causes unresolved refer-
ences at link time. For example, ‘EXTERNAL DATE; CALL DATE(STR)’ is normally compiled
by g77 as, in C, ‘date_(&str, 20);’. This, in turn, links to the date_ procedure in the
1ibE77 portion of 1ibg2c, which purposely calls a nonexistent procedure named G77_date_
y2kbuggy_0. The resulting link-time error is designed, via this name, to encourage the
programmer to look up the index entries to this portion of the g77 documentation.

Generally, we recommend that the EXTERNAL method of invoking procedures in 1ibg2c
not be used. When used, some of the correctness checking normally performed by g77 is
skipped.

In particular, it is probably better to use the INTRINSIC method of invoking non-Y2K-
compliant procedures, so anyone compiling the code can quickly notice the potential Y2K
problems (via the warnings printing by g77) without having to even look at the code itself.

If there are problems linking 1ibg2c to code compiled by g77 that involve the string
‘y2kbug’, and these are not explained above, that probably indicates that a version of
libg2c older than g77 is being linked to, or that the new library is being linked to code
compiled by an older version of g77.

That’s because, as of the version that warns about non-Y2K-compliant intrinsic invo-
cation, g77 references the 1ibg2c implementations of those intrinsics using new names,
containing the string ‘y2kbug’.

So, linking newly-compiled code (invoking one of the intrinsics in question) to an old
library might yield an unresolved reference to G77_date_y2kbug_0. (The old library calls
it G77_date_0.)

Similarly, linking previously-compiled code to a new library might yield an unresolved
reference to G77_vxtidate_0. (The new library calls it G77_vxtidate_y2kbug_0.)

The proper fix for the above problems is to obtain the latest release of g77 and related
products (including 1ibg2c) and install them on all systems, then recompile, relink, and
install (as appropriate) all existing Fortran programs.

(Normally, this sort of renaming is steadfastly avoided. In this case, however, it seems
more important to highlight potential Y2K problems than to ease the transition of poten-
tially non-Y2K-compliant code to new versions of g77 and libg2c.)

10.2.3 Array Size

Currently, g77 uses the default INTEGER type for array indexes, which limits the sizes of
single-dimension arrays on systems offering a larger address space than can be addressed by
that type. (That g77 puts all arrays in memory could be considered another limitation—it
could use large temporary files—but that decision is left to the programmer as an imple-
mentation choice by most Fortran implementations.)

204 Using and Porting GNU Fortran

It is not yet clear whether this limitation never, sometimes, or always applies to the sizes
of multiple-dimension arrays as a whole.

For example, on a system with 64-bit addresses and 32-bit default INTEGER, an array
with a size greater than can be addressed by a 32-bit offset can be declared using multiple
dimensions. Such an array is therefore larger than a single-dimension array can be, on the
same system.

Whether large multiple-dimension arrays are reliably supported depends mostly on the
gcc back end (code generator) used by g77, and has not yet been fully investigated.

10.2.4 Character-variable Length

Currently, g77 uses the default INTEGER type for the lengths of CHARACTER variables and
array elements.

This means that, for example, a system with a 64-bit address space and a 32-bit default
INTEGER type does not, under g77, support a CHARACTER*n declaration where n is greater
than 2147483647.

10.2.5 Year 10000 (Y10K) Problems

Most intrinsics returning, or computing values based on, date information are prone to
Year-10000 (Y10K) problems, due to supporting only 4 digits for the year.

See the following for examples: Section 8.11.9.102 [FDate Intrinsic (function)], page 139,
Section 8.11.9.101 [FDate Intrinsic (subroutine)], page 138, Section 8.11.9.138 [IDate Intrin-
sic (UNIX)], page 150, Section 10.5.2.134 [Time Intrinsic (VXT)], page 229, Section 8.11.9.60
[Date_and_Time Intrinsic], page 128.

10.3 Compiler Types

Fortran implementations have a fair amount of freedom given them by the standard as
far as how much storage space is used and how much precision and range is offered by the
various types such as LOGICAL (KIND=1), INTEGER (KIND=1), REAL (KIND=1), REAL(KIND=2),
COMPLEX (KIND=1), and CHARACTER. Further, many compilers offer so-called ‘*n’ notation,
but the interpretation of n varies across compilers and target architectures.

The standard requires that LOGICAL (KIND=1), INTEGER (KIND=1), and REAL (KIND=1) oc-
cupy the same amount of storage space, and that COMPLEX (KIND=1) and REAL (KIND=2) take
twice as much storage space as REAL (KIND=1). Further, it requires that COMPLEX (KIND=1)
entities be ordered such that when a COMPLEX (KIND=1) variable is storage-associated (such
as via EQUIVALENCE) with a two-element REAL (KIND=1) array named ‘R’, ‘R(1)’ corresponds
to the real element and ‘R(2)’ to the imaginary element of the COMPLEX (KIND=1) variable.

(Few requirements as to precision or ranges of any of these are placed on the implemen-
tation, nor is the relationship of storage sizes of these types to the CHARACTER type specified,
by the standard.)

g77 follows the above requirements, warning when compiling a program requires place-
ment of items in memory that contradict the requirements of the target architecture. (For
example, a program can require placement of a REAL(KIND=2) on a boundary that is not an
even multiple of its size, but still an even multiple of the size of a REAL(KIND=1) variable.

Chapter 10: The GNU Fortran Compiler 205

On some target architectures, using the canonical mapping of Fortran types to underlying
architectural types, such placement is prohibited by the machine definition or the Applica-
tion Binary Interface (ABI) in force for the configuration defined for building gcc and g77.
g77 warns about such situations when it encounters them.)

g77 follows consistent rules for configuring the mapping between Fortran types, includ-
ing the ‘*n’ notation, and the underlying architectural types as accessed by a similarly-
configured applicable version of the gcc compiler. These rules offer a widely portable,
consistent Fortran/C environment, although they might well conflict with the expectations
of users of Fortran compilers designed and written for particular architectures.

These rules are based on the configuration that is in force for the version of gcc built
in the same release as g77 (and which was therefore used to build both the g77 compiler
components and the 1ibg2c run-time library):

REAL (KIND=1)
Same as float type.

REAL (KIND=2)
Same as whatever floating-point type that is twice the size of a float—usually,
this is a double.

INTEGER (KIND=1)
Same as an integral type that is occupies the same amount of memory storage
as float—usually, this is either an int or a long int.

LOGICAL(KIND=1)
Same gcc type as INTEGER (KIND=1).

INTEGER (KIND=2)
Twice the size, and usually nearly twice the range, as INTEGER(KIND=1)—
usually, this is either a long int or a long long int.

LOGICAL(KIND=2)
Same gcc type as INTEGER (KIND=2).

INTEGER (KIND=3)
Same gcc type as signed char.

LOGICAL(KIND=3)
Same gcc type as INTEGER (KIND=3).

INTEGER (KIND=6)
Twice the size, and usually nearly twice the range, as INTEGER(KIND=3)—
usually, this is a short.

LOGICAL(KIND=6)
Same gcc type as INTEGER (KIND=6).

COMPLEX (KIND=1)
Two REAL(KIND=1) scalars (one for the real part followed by one for the imag-
inary part).

COMPLEX (KIND=2)
Two REAL (KIND=2) scalars.

206 Using and Porting GNU Fortran

numeric-type*n
(Where numeric-type is any type other than CHARACTER.) Same as whatever
gcce type occupies n times the storage space of a gcc char item.

DOUBLE PRECISION
Same as REAL (KIND=2).

DOUBLE COMPLEX
Same as COMPLEX (KIND=2).

Note that the above are proposed correspondences and might change in future versions
of g77—avoid writing code depending on them.

Other types supported by g77 are derived from gcc types such as char, short, int,
long int, long long int, long double, and so on. That is, whatever types gcc already
supports, g77 supports now or probably will support in a future version. The rules for the
‘numeric-type*xn’ notation apply to these types, and new values for ‘numeric-type (KIND=n)’
will be assigned in a way that encourages clarity, consistency, and portability.

10.4 Compiler Constants

g77 strictly assigns types to all constants not documented as “typeless” (typeless con-
stants including ‘’1°Z’, for example). Many other Fortran compilers attempt to assign
types to typed constants based on their context. This results in hard-to-find bugs, non-
portable code, and is not in the spirit (though it strictly follows the letter) of the 77 and
90 standards.

g77 might offer, in a future release, explicit constructs by which a wider variety of
typeless constants may be specified, and/or user-requested warnings indicating places where
g77 might differ from how other compilers assign types to constants.

See Section 15.5.4 [Context-Sensitive Constants], page 294, for more information on this
issue.

10.5 Compiler Intrinsics

g77 offers an ever-widening set of intrinsics. Currently these all are procedures (functions
and subroutines).

Some of these intrinsics are unimplemented, but their names reserved to reduce future
problems with existing code as they are implemented. Others are implemented as part
of the GNU Fortran language, while yet others are provided for compatibility with other
dialects of Fortran but are not part of the GNU Fortran language.

To manage these distinctions, g77 provides intrinsic groups, a facility that is simply an
extension of the intrinsic groups provided by the GNU Fortran language.

10.5.1 Intrinsic Groups

A given specific intrinsic belongs in one or more groups. Each group is deleted, disabled,
hidden, or enabled by default or a command-line option. The meaning of each term follows.

Deleted No intrinsics are recognized as belonging to that group.

Chapter 10: The GNU Fortran Compiler 207

Disabled Intrinsics are recognized as belonging to the group, but references to them
(other than via the INTRINSIC statement) are disallowed through that group.

Hidden Intrinsics in that group are recognized and enabled (if implemented) only if
the first mention of the actual name of an intrinsic in a program unit is in an
INTRINSIC statement.

Enabled Intrinsics in that group are recognized and enabled (if implemented).

The distinction between deleting and disabling a group is illustrated by the following
example. Assume intrinsic ‘FO0’ belongs only to group ‘FGR’. If group ‘FGR’ is deleted, the
following program unit will successfully compile, because ‘F00 ()’ will be seen as a reference
to an external function named ‘F00’:

PRINT *, F00()
END

If group ‘FGR’ is disabled, compiling the above program will produce diagnostics, either
because the ‘FO0’ intrinsic is improperly invoked or, if properly invoked, it is not enabled.
To change the above program so it references an external function ‘FO0’ instead of the
disabled ‘FOO’ intrinsic, add the following line to the top:

EXTERNAL FOO

So, deleting a group tells g77 to pretend as though the intrinsics in that group do not exist
at all, whereas disabling it tells g77 to recognize them as (disabled) intrinsics in intrinsic-like
contexts.

Hiding a group is like enabling it, but the intrinsic must be first named in an INTRINSIC
statement to be considered a reference to the intrinsic rather than to an external procedure.
This might be the “safest” way to treat a new group of intrinsics when compiling old code,
because it allows the old code to be generally written as if those new intrinsics never existed,
but to be changed to use them by inserting INTRINSIC statements in the appropriate places.
However, it should be the goal of development to use EXTERNAL for all names of external
procedures that might be intrinsic names.

If an intrinsic is in more than one group, it is enabled if any of its containing groups
are enabled; if not so enabled, it is hidden if any of its containing groups are hidden; if
not so hidden, it is disabled if any of its containing groups are disabled; if not so disabled,
it is deleted. This extra complication is necessary because some intrinsics, such as IBITS,
belong to more than one group, and hence should be enabled if any of the groups to which
they belong are enabled, and so on.

The groups are:
badu77 UNIX intrinsics having inappropriate forms (usually functions that have in-
tended side effects).

gnu Intrinsics the GNU Fortran language supports that are extensions to the Fortran
standards (77 and 90).

f2c Intrinsics supported by AT&T’s £2¢ converter and/or 1ibf2c.
£90 Fortran 90 intrinsics.

mil MIL-STD 1753 intrinsics (MVBITS, IAND, BTEST, and so on).

208 Using and Porting GNU Fortran

unix UNIX intrinsics (IARGC, EXIT, ERF, and so on).
VXt VAX/VMS FORTRAN (current as of v4) intrinsics.
10.5.2 Other Intrinsics

g77 supports intrinsics other than those in the GNU Fortran language proper
of intrinsics is described below.

10.5.2.1 ACosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an
Use ‘EXTERNAL ACosD’ to use this name for an external procedure.

10.5.2.2 AIMax0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an
Use ‘EXTERNAL AIMax0’ to use this name for an external procedure.

10.5.2.3 AIMinO Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an
Use ‘EXTERNAL AIMinO’ to use this name for an external procedure.

10.5.2.4 AJMax0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an
Use ‘EXTERNAL AJMax0’ to use this name for an external procedure.

10.5.2.5 AJMinO Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an
Use ‘EXTERNAL AJMinO’ to use this name for an external procedure.

10.5.2.6 ASinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an
Use ‘EXTERNAL ASinD’ to use this name for an external procedure.

10.5.2.7 ATan2D Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an
Use ‘EXTERNAL ATan2D’ to use this name for an external procedure.

10.5.2.8 ATanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an
Use ‘EXTERNAL ATanD’ to use this name for an external procedure.

. This set

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

Chapter 10: The GNU Fortran Compiler 209

10.5.2.9 BlITest Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL BITest’ to use this name for an external procedure.

10.5.2.10 BJTest Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL BJTest’ to use this name for an external procedure.

10.5.2.11 CDADbs Intrinsic

CDAbs (A)
CDADs: REAL(KIND=2) function.
A: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of ABS() that is specific to one type for A. See Section 8.11.9.2 [Abs
Intrinsic|, page 113.

10.5.2.12 CDCos Intrinsic

CDCos (X)
CDCos: COMPLEX (KIND=2) function.
X: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of COS() that is specific to one type for X. See Section 8.11.9.46 [Cos
Intrinsic|, page 125.

10.5.2.13 CDExp Intrinsic

CDExp (X)
CDExp: COMPLEX(KIND=2) function.
X: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of EXP() that is specific to one type for X. See Section 8.11.9.99 [Exp
Intrinsic|, page 138.

210 Using and Porting GNU Fortran

10.5.2.14 CDLog Intrinsic

CDLog (X)
CDLog: COMPLEX (KIND=2) function.
X: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of LOG() that is specific to one type for X. See Section 8.11.9.170 [Log
Intrinsic|, page 160.

10.5.2.15 CDSin Intrinsic

CDSin(X)
CDSin: COMPLEX(KIND=2) function.
X: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of SIN() that is specific to one type for X. See Section 8.11.9.229 [Sin
Intrinsic], page 174.

10.5.2.16 CDSqRt Intrinsic

CDSqRt (X)
CDSqRt: COMPLEX (KIND=2) function.
X: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of SQRT() that is specific to one type for X. See Section 8.11.9.235 [SqRt
Intrinsic], page 175.

10.5.2.17 ChDir Intrinsic (function)

ChDir (Dir)
ChDir: INTEGER(KIND=1) function.
Dir: CHARACTER, scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Sets the current working directory to be Dir. Returns 0 on success or a non-zero error
code. See chdir(3).

Caution: Using this routine during I/O to a unit connected with a non-absolute file
name can cause subsequent I/O on such a unit to fail because the I/O library might reopen
files by name.

Due to the side effects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 8.11.9.40 [ChDir
Intrinsic (subroutine)], page 122.

Chapter 10: The GNU Fortran Compiler 211

10.5.2.18 ChMod Intrinsic (function)

ChMod (Name, Mode)
ChMod: INTEGER(KIND=1) function.
Name: CHARACTER, scalar; INTENT(IN).
Mode: CHARACTER,; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Changes the access mode of file Name according to the specification Mode, which is
given in the format of chmod (1). A null character (‘CHAR(0)’) marks the end of the name in
Name—otherwise, trailing blanks in Name are ignored. Currently, Name must not contain
the single quote character.

Returns 0 on success or a non-zero error code otherwise.

Note that this currently works by actually invoking /bin/chmod (or the chmod found
when the library was configured) and so might fail in some circumstances and will, anyway,
be slow.

Due to the side effects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 8.11.9.41 [ChMod
Intrinsic (subroutine)], page 123.

10.5.2.19 CosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL CosD’ to use this name for an external procedure.

10.5.2.20 DACosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL DACosD’ to use this name for an external procedure.

10.5.2.21 DASinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL DASinD’ to use this name for an external procedure.

10.5.2.22 DATan2D Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL DATan2D’ to use this name for an external procedure.

10.5.2.23 DATanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL DATanD’ to use this name for an external procedure.

212 Using and Porting GNU Fortran

10.5.2.24 Date Intrinsic

CALL Date(Date)
Date: CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: vxt.
Description:

Returns Date in the form ‘dd-mmm-yy’, representing the numeric day of the month
dd, a three-character abbreviation of the month name mmm and the last two digits of the
year yy, e.g. ‘25-Nov-96’".

This intrinsic is not recommended, due to the year 2000 approaching. Therefore, pro-
grams making use of this intrinsic might not be Year 2000 (Y2K) compliant. See Sec-
tion 8.11.9.53 [CTime Intrinsic (subroutine)|, page 126, for information on obtaining more
digits for the current (or any) date.

10.5.2.25 DbleQ Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL DbleQ’ to use this name for an external procedure.

10.5.2.26 DCmplx Intrinsic

DCmplx (X, Y)
DCmplx: COMPLEX(KIND=2) function.
X: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Y': INTEGER or REAL; OPTIONAL (must be omitted if X is COMPLEX); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

If X is not type COMPLEX, constructs a value of type COMPLEX (KIND=2) from the real and
imaginary values specified by X and Y, respectively. If Y is omitted, ‘OD0’ is assumed.

If X is type COMPLEX, converts it to type COMPLEX (KIND=2).

Although this intrinsic is not standard Fortran, it is a popular extension offered by many
compilers that support DOUBLE COMPLEX, since it offers the easiest way to convert to DOUBLE
COMPLEX without using Fortran 90 features (such as the ‘KIND=" argument to the CMPLX ()
intrinsic).

(‘CMPLX (0DO, ODO)’ returns a single-precision COMPLEX result, as required by standard
FORTRAN 77. That’s why so many compilers provide DCMPLX (), since ‘DCMPLX(0DO,
0DO0)’ returns a DOUBLE COMPLEX result. Still, DCMPLX() converts even REAL*16 arguments
to their REAL*8 equivalents in most dialects of Fortran, so neither it nor CMPLX () allow easy
construction of arbitrary-precision values without potentially forcing a conversion involving
extending or reducing precision. GNU Fortran provides such an intrinsic, called COMPLEX().)

See Section 8.11.9.44 [Complex Intrinsic], page 124, for information on easily constructing
a COMPLEX value of arbitrary precision from REAL arguments.

Chapter 10: The GNU Fortran Compiler 213

10.5.2.27 DConjg Intrinsic

DConjg(Z)
DConjg: COMPLEX (KIND=2) function.
Z: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of CONJG() that is specific to one type for Z. See Section 8.11.9.45 [Conjg
Intrinsic], page 124.

10.5.2.28 DCosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL DCosD’ to use this name for an external procedure.

10.5.2.29 DFloat Intrinsic

DFloat (A)
DFloat: REAL(KIND=2) function.
A: INTEGER; scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of REAL() that is specific to one type for A. See Section 8.11.9.211 [Real
Intrinsic|, page 169.

10.5.2.30 DFlotl Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL DFlotI’ to use this name for an external procedure.

10.5.2.31 DFlotJ Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL DFlotJ’ to use this name for an external procedure.

10.5.2.32 DImag Intrinsic

DImag(Z)
DImag: REAL(KIND=2) function.
Z: COMPLEX (KIND=2); scalar; INTENT(IN).
Intrinsic groups: f2c, vxt.
Description:

Archaic form of AIMAG() that is specific to one type for Z. See Section 8.11.9.8 [Almag
Intrinsic|, page 114.

214 Using and Porting GNU Fortran

10.5.2.33 DReal Intrinsic

DReal (A)
DReal: REAL(KIND=2) function.
A: INTEGER, REAL, or COMPLEX; scalar; INTENT(IN).
Intrinsic groups: vxt.
Description:
Converts A to REAL (KIND=2).

If A is type COMPLEX, its real part is converted (if necessary) to REAL (KIND=2), and its
imaginary part is disregarded.

Although this intrinsic is not standard Fortran, it is a popular extension offered by many
compilers that support DOUBLE COMPLEX, since it offers the easiest way to extract the real
part of a DOUBLE COMPLEX value without using the Fortran 90 REAL() intrinsic in a way that
produces a return value inconsistent with the way many FORTRAN 77 compilers handle
REAL () of a DOUBLE COMPLEX value.

See Section 8.11.9.212 [RealPart Intrinsic|, page 170, for information on a GNU Fortran
intrinsic that avoids these areas of confusion.

See Section 8.11.9.67 [Dble Intrinsic|, page 130, for information on the standard FOR-~
TRAN 77 replacement for DREAL ().

See Section 8.11.5 [REAL() and AIMAG() of Complex], page 110, for more information
on this issue.

10.5.2.34 DSinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL DSinD’ to use this name for an external procedure.

10.5.2.35 DTanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL DTanD’ to use this name for an external procedure.

10.5.2.36 DTime Intrinsic (function)

DTime (TArray)
DTime: REAL(KIND=1) function.
TArray: REAL(KIND=1); DIMENSION(2); INTENT(OUT).
Intrinsic groups: badu77.
Description:

Initially, return the number of seconds of runtime since the start of the process’s execu-
tion as the function value, and the user and system components of this in ‘TArray (1)’ and
‘TArray (2)’ respectively. The functions’ value is equal to ‘TArray (1) + TArray (2)’.

Subsequent invocations of ‘DTIME()’ return values accumulated since the previous invo-
cation.

Chapter 10: The GNU Fortran Compiler 215

On some systems, the underlying timings are represented using types with sufficiently
small limits that overflows (wraparounds) are possible, such as 32-bit types. Therefore, the
values returned by this intrinsic might be, or become, negative, or numerically less than
previous values, during a single run of the compiled program.

Due to the side effects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 8.11.9.91 [DTime
Intrinsic (subroutine)], page 136.

10.5.2.37 FGet Intrinsic (function)

FGet (C)
FGet: INTEGER(KIND=1) function.
C': CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: badu77.
Description:

Reads a single character into C in stream mode from unit 5 (by-passing normal formatted
input) using getc(3). Returns 0 on success, —1 on end-of-file, and the error code from
ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 8.11.9.103 [FGet
Intrinsic (subroutine)], page 139.

10.5.2.38 FGetC Intrinsic (function)

FGetC(Unit, C)
FGetC: INTEGER(KIND=1) function.
Unit: INTEGER; scalar; INTENT(IN).
C': CHARACTER; scalar; INTENT(OUT).
Intrinsic groups: badu77.
Description:

Reads a single character into C in stream mode from unit Unit (by-passing normal
formatted output) using getc(3). Returns 0 on success, —1 on end-of-file, and the error
code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 8.11.9.104 [FGetC
Intrinsic (subroutine)], page 139.

10.5.2.39 Floatl Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL FloatI’ to use this name for an external procedure.

216 Using and Porting GNU Fortran

10.5.2.40 FloatJ Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL FloatJ’ to use this name for an external procedure.

10.5.2.41 FPut Intrinsic (function)

FPut (C)
FPut: INTEGER(KIND=1) function.
C': CHARACTER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Writes the single character C in stream mode to unit 6 (by-passing normal formatted
output) using getc(3). Returns 0 on success, the error code from ferror(3) otherwise.

Stream I/0 should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 8.11.9.109 [FPut
Intrinsic (subroutine)], page 141.

10.5.2.42 FPutC Intrinsic (function)

FPutC(Unit, C)
FPutC: INTEGER(KIND=1) function.
Unit: INTEGER; scalar; INTENT(IN).
C': CHARACTER,; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Writes the single character C in stream mode to unit Unit (by-passing normal formatted
output) using putc(3). Returns 0 on success, the error code from ferror(3) otherwise.

Stream I/O should not be mixed with normal record-oriented (formatted or unformatted)
I/O on the same unit; the results are unpredictable.

For information on other intrinsics with the same name: See Section 8.11.9.110 [FPutC
Intrinsic (subroutine)], page 141.

10.5.2.43 IDate Intrinsic (VXT)

CALL IDate(M, D, Y)
M: INTEGER(KIND=1); scalar; INTENT(OUT).
D: INTEGER(KIND=1); scalar; INTENT(OUT).
Y: INTEGER(KIND=1); scalar; INTENT(OUT).
Intrinsic groups: vxt.
Description:

Returns the numerical values of the current local time. The month (in the range 1-12)
is returned in M, the day (in the range 1-7) in D, and the year in Y (in the range 0-99).

Chapter 10: The GNU Fortran Compiler 217

This intrinsic is not recommended, due to the year 2000 approaching. Therefore, pro-
grams making use of this intrinsic might not be Year 2000 (Y2K) compliant. For example,
the date might appear, to such programs, to wrap around (change from a larger value to a
smaller one) as of the Year 2000.

See Section 8.11.9.138 [IDate Intrinsic (UNIX)], page 150, for information on obtaining
more digits for the current date.

For information on other intrinsics with the same name: See Section 8.11.9.138 [IDate
Intrinsic (UNIX)], page 150.

10.5.2.44 ITAbs Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IIAbs’ to use this name for an external procedure.

10.5.2.45 ITAnd Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL ITAnd’ to use this name for an external procedure.

10.5.2.46 IIBClIlr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IIBClr’ to use this name for an external procedure.

10.5.2.47 1IBits Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IIBits’ to use this name for an external procedure.

10.5.2.48 IIBSet Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IIBSet’ to use this name for an external procedure.

10.5.2.49 IIDiM Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IIDiM’ to use this name for an external procedure.

10.5.2.50 IIDInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IIDInt’ to use this name for an external procedure.

10.5.2.51 IIDNnt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IIDNnt’ to use this name for an external procedure.

218 Using and Porting GNU Fortran

10.5.2.52 ITEOr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IIEOr’ to use this name for an external procedure.

10.5.2.53 IIFix Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IIFix’ to use this name for an external procedure.

10.5.2.54 IInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IInt’ to use this name for an external procedure.

10.5.2.55 IIOr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL II0r’ to use this name for an external procedure.

10.5.2.56 IIQint Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IIQint’ to use this name for an external procedure.

10.5.2.57 IIQNnt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IIQNnt’ to use this name for an external procedure.

10.5.2.58 TIShftC Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IIShftC’ to use this name for an external procedure.

10.5.2.59 IISign Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IISign’ to use this name for an external procedure.

10.5.2.60 IMax0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IMaxO’ to use this name for an external procedure.

10.5.2.61 IMax1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL IMax1’ to use this name for an external procedure.

Chapter 10: The GNU Fortran Compiler

10.5.2.62 IMinO Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL IMinO’ to use this name for an external procedure.

10.5.2.63 IMinl Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL IMinl1’ to use this name for an external procedure.

10.5.2.64 IMod Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL IMod’ to use this name for an external procedure.

10.5.2.65 INInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL INInt’ to use this name for an external procedure.

10.5.2.66 INot Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL INot’ to use this name for an external procedure.

10.5.2.67 IZExt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL IZExt’ to use this name for an external procedure.

10.5.2.68 JIAbs Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL JIAbs’ to use this name for an external procedure.

10.5.2.69 JIAnd Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL JIAnd’ to use this name for an external procedure.

10.5.2.70 JIBClIlr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL JIBClr’ to use this name for an external procedure.

10.5.2.71 JIBits Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL JIBits’ to use this name for an external procedure.

an

an

an

an

an

an

an

an

an

an

219

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

220 Using and Porting GNU Fortran

10.5.2.72 JIBSet Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JIBSet’ to use this name for an external procedure.

10.5.2.73 JIDiM Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JIDiM’ to use this name for an external procedure.

10.5.2.74 JIDInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JIDInt’ to use this name for an external procedure.

10.5.2.75 JIDNnt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JIDNnt’ to use this name for an external procedure.

10.5.2.76 JIEOr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JIEOr’ to use this name for an external procedure.

10.5.2.77 JIFix Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JIFix’ to use this name for an external procedure.

10.5.2.78 JInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JInt’ to use this name for an external procedure.

10.5.2.79 JIOr Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JIOr’ to use this name for an external procedure.

10.5.2.80 JIQint Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JIQint’ to use this name for an external procedure.

10.5.2.81 JIQNnt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JIQNnt’ to use this name for an external procedure.

Chapter 10: The GNU Fortran Compiler 221

10.5.2.82 JIShft Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JIShft’ to use this name for an external procedure.

10.5.2.83 JIShftC Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JIShftC’ to use this name for an external procedure.

10.5.2.84 JISign Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JISign’ to use this name for an external procedure.

10.5.2.85 JMax0 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JMax0’ to use this name for an external procedure.

10.5.2.86 JMax1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JMax1’ to use this name for an external procedure.

10.5.2.87 JMinO Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JMinO’ to use this name for an external procedure.

10.5.2.88 JMinl Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JMin1’ to use this name for an external procedure.

10.5.2.89 JMod Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JMod’ to use this name for an external procedure.

10.5.2.90 JNInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JNInt’ to use this name for an external procedure.

10.5.2.91 JNot Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JNot’ to use this name for an external procedure.

222 Using and Porting GNU Fortran

10.5.2.92 JZExt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL JZExt’ to use this name for an external procedure.

10.5.2.93 Kill Intrinsic (function)

Kill(Pid, Signal)
Kill: INTEGER(KIND=1) function.
Pid: INTEGER; scalar; INTENT(IN).
Signal: INTEGER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Sends the signal specified by Signal to the process Pid. Returns 0 on success or a non-zero
error code. See kill(2).

Due to the side effects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 8.11.9.158 [Kill
Intrinsic (subroutine)], page 156.

10.5.2.94 Link Intrinsic (function)

Link(Pathl, Path2)
Link: INTEGER(KIND=1) function.
Pathl: CHARACTER; scalar; INTENT(IN).
Path2: CHARACTER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Makes a (hard) link from file Pathl to Path2. A null character (‘CHAR(0)’) marks the
end of the names in Pathl and Path2—otherwise, trailing blanks in Pathl and Path2 are
ignored. Returns 0 on success or a non-zero error code. See 1ink(2).

Due to the side effects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 8.11.9.165 [Link
Intrinsic (subroutine)], page 158.

10.5.2.95 QAbs Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL QAbs’ to use this name for an external procedure.

10.5.2.96 QACos Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL QACos’ to use this name for an external procedure.

Chapter 10: The GNU Fortran Compiler

10.5.2.97 QACosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QACosD’ to use this name for an external procedure.

10.5.2.98 QASin Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QASin’ to use this name for an external procedure.

10.5.2.99 QASinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QASinD’ to use this name for an external procedure.

10.5.2.100 QATan Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QATan’ to use this name for an external procedure.

10.5.2.101 QATan2 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QATan2’ to use this name for an external procedure.

10.5.2.102 QATan2D Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QATan2D’ to use this name for an external procedure.

10.5.2.103 QATanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QATanD’ to use this name for an external procedure.

10.5.2.104 QCos Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QCos’ to use this name for an external procedure.

10.5.2.105 QCosD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QCosD’ to use this name for an external procedure.

10.5.2.106 QCosH Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QCosH’ to use this name for an external procedure.

an

an

an

an

an

an

an

an

an

an

223

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

224 Using and Porting GNU Fortran

10.5.2.107 QDiM Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QDiM’ to use this name for an external procedure.

10.5.2.108 QExp Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QExp’ to use this name for an external procedure.

10.5.2.109 QExt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QExt’ to use this name for an external procedure.

10.5.2.110 QExtD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QExtD’ to use this name for an external procedure.

10.5.2.111 QFloat Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QFloat’ to use this name for an external procedure.

10.5.2.112 QInt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QInt’ to use this name for an external procedure.

10.5.2.113 QLog Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QLog’ to use this name for an external procedure.

10.5.2.114 QLog10 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QLog10’ to use this name for an external procedure.

10.5.2.115 QMax1 Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QMax1’ to use this name for an external procedure.

10.5.2.116 QMinl Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as
Use ‘EXTERNAL QMin1’ to use this name for an external procedure.

an

an

an

an

an

an

an

an

an

an

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

Chapter 10: The GNU Fortran Compiler

10.5.2.117 QMod Intrinsic

This intrinsic is not yet implemented. The name is, however,
Use ‘EXTERNAL QMod’ to use this name for an external procedure.

10.5.2.118 QNInt Intrinsic

This intrinsic is not yet implemented. The name is, however,

Use ‘EXTERNAL QNInt’ to use this name for an external procedure.

10.5.2.119 QSin Intrinsic

This intrinsic is not yet implemented. The name is, however,
Use ‘EXTERNAL QSin’ to use this name for an external procedure.

10.5.2.120 QSinD Intrinsic

This intrinsic is not yet implemented. The name is, however,

Use ‘EXTERNAL QSinD’ to use this name for an external procedure.

10.5.2.121 QSinH Intrinsic

This intrinsic is not yet implemented. The name is, however,

Use ‘EXTERNAL QSinH’ to use this name for an external procedure.

10.5.2.122 QSqRt Intrinsic

This intrinsic is not yet implemented. The name is, however,

Use ‘EXTERNAL QSqgRt’ to use this name for an external procedure.

10.5.2.123 QTan Intrinsic

This intrinsic is not yet implemented. The name is, however,
Use ‘EXTERNAL QTan’ to use this name for an external procedure.

10.5.2.124 QTanD Intrinsic

This intrinsic is not yet implemented. The name is, however,

Use ‘EXTERNAL QTanD’ to use this name for an external procedure.

10.5.2.125 QTanH Intrinsic

This intrinsic is not yet implemented. The name is, however,

Use ‘EXTERNAL QTanH’ to use this name for an external procedure.

reserved as

reserved as

reserved as

reserved as

reserved as

reserved as

reserved as

reserved as

reserved as

an

an

an

an

an

an

an

an

an

225

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

intrinsic.

226 Using and Porting GNU Fortran

10.5.2.126 Rename Intrinsic (function)

Rename (Pathl, Path2)
Rename: INTEGER(KIND=1) function.
Pathl: CHARACTER, scalar; INTENT(IN).
Path2: CHARACTER, scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Renames the file Pathl to Path2. A null character (‘CHAR(0)’) marks the end of the
names in Pathl and Path2—otherwise, trailing blanks in Pathl and Path2 are ignored. See
rename (2). Returns 0 on success or a non-zero error code.

Due to the side effects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 8.11.9.213 [Rename
Intrinsic (subroutine)], page 170.

10.5.2.127 Secnds Intrinsic

Secnds (T)
Secnds: REAL(KIND=1) function.
T: REAL(KIND=1); scalar; INTENT(IN).
Intrinsic groups: vxt.
Description:
Returns the local time in seconds since midnight minus the value T.

This values returned by this intrinsic become numerically less than previous values (they
wrap around) during a single run of the compiler program, under normal circumstances
(such as running through the midnight hour).

10.5.2.128 Signal Intrinsic (function)

Signal (Number, Handler)
Signal: INTEGER(KIND=7) function.
Number: INTEGER; scalar; INTENT(IN).

Handler: Signal handler (INTEGER FUNCTION or SUBROUTINE) or dummy/global
INTEGER (KIND=1) scalar.

Intrinsic groups: badu77.
Description:

If Handler is a an EXTERNAL routine, arranges for it to be invoked with a single integer
argument (of system-dependent length) when signal Number occurs. If Handler is an in-
teger, it can be used to turn off handling of signal Number or revert to its default action.
See signal(2).

Note that Handler will be called using C conventions, so the value of its argument in
Fortran terms is obtained by applying %LOC() (or LOCY()) to it.

The value returned by signal(2) is returned.

Chapter 10: The GNU Fortran Compiler 227

Due to the side effects performed by this intrinsic, the function form is not recommended.

Warning: If the returned value is stored in an INTEGER(KIND=1) (default INTEGER)
argument, truncation of the original return value occurs on some systems (such as Alphas,
which have 64-bit pointers but 32-bit default integers), with no warning issued by g77 under
normal circumstances.

Therefore, the following code fragment might silently fail on some systems:

INTEGER RTN
EXTERNAL MYHNDL
RTN = SIGNAL (signum, MYHNDL)

! Restore original handler:
RTN = SIGNAL(signum, RTN)

The reason for the failure is that ‘RTN’ might not hold all the information on the original
handler for the signal, thus restoring an invalid handler. This bug could manifest itself as
a spurious run-time failure at an arbitrary point later during the program’s execution, for
example.

Warning: Use of the 1ibf2c¢ run-time library function ‘signal_’ directly (such as via
‘EXTERNAL SIGNAL’) requires use of the %VAL() construct to pass an INTEGER value (such as
‘SIG_IGN’ or ‘SIG_DFL’) for the Handler argument.

However, while ‘RTN = SIGNAL (signum, %VAL(SIG_IGN))’ works when ‘SIGNAL’ is
treated as an external procedure (and resolves, at link time, to 1libf2c’s ‘signal_’
routine), this construct is not valid when ‘SIGNAL’ is recognized as the intrinsic of that
name.

Therefore, for maximum portability and reliability, code such references to the ‘SIGNAL’
facility as follows:

INTRINSIC SIGNAL

RTN = SIGNAL (signum, SIG_IGN)

g77 will compile such a call correctly, while other compilers will generally either do so
as well or reject the ‘INTRINSIC SIGNAL’ statement via a diagnostic, allowing you to take
appropriate action.

For information on other intrinsics with the same name: See Section 8.11.9.228 [Signal
Intrinsic (subroutine)], page 173.

10.5.2.129 SinD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL SinD’ to use this name for an external procedure.

10.5.2.130 SnglQ Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL SnglQ’ to use this name for an external procedure.

228 Using and Porting GNU Fortran

10.5.2.131 SymLnk Intrinsic (function)

SymLnk (Pathl, Path2)
SymLnk: INTEGER(KIND=1) function.
Pathl: CHARACTER, scalar; INTENT(IN).
Path2: CHARACTER, scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Makes a symbolic link from file Pathl to Path2. A null character (‘CHAR(0)’) marks
the end of the names in Pathl and Path2—otherwise, trailing blanks in Pathl and Path2
are ignored. Returns 0 on success or a non-zero error code (ENOSYS if the system does not
provide symlink(2)).

Due to the side effects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 8.11.9.240 [SymLnk
Intrinsic (subroutine)], page 177.

10.5.2.132 System Intrinsic (function)

System(Command)
System: INTEGER(KIND=1) function.
Command: CHARACTER, scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:
Passes the command Command to a shell (see system(3)). Returns the value returned

by system(3), presumably 0 if the shell command succeeded. Note that which shell is used
to invoke the command is system-dependent and environment-dependent.

Due to the side effects performed by this intrinsic, the function form is not recommended.
However, the function form can be valid in cases where the actual side effects performed by
the call are unimportant to the application.

For example, on a UNIX system, ‘SAME = SYSTEM(’cmp a b’)’ does not perform any
side effects likely to be important to the program, so the programmer would not care if
the actual system call (and invocation of cmp) was optimized away in a situation where the
return value could be determined otherwise, or was not actually needed (‘SAME’ not actually
referenced after the sample assignment statement).

For information on other intrinsics with the same name: See Section 8.11.9.241 [System
Intrinsic (subroutine)], page 178.

10.5.2.133 TanD Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL TanD’ to use this name for an external procedure.

Chapter 10: The GNU Fortran Compiler 229

10.5.2.134 Time Intrinsic (VXT)

CALL Time(Time)
Time: CHARACTER*8; scalar; INTENT(OUT).
Intrinsic groups: vxt.
Description:

Returns in Time a character representation of the current time as obtained from
ctime(3).

Programs making use of this intrinsic might not be Year 10000 (Y10K) compliant. For
example, the date might appear, to such programs, to wrap around (change from a larger
value to a smaller one) as of the Year 10000.

See Section 8.11.9.101 [FDate Intrinsic (subroutine)], page 138, for an equivalent routine.

For information on other intrinsics with the same name: See Section 8.11.9.245 [Time
Intrinsic (UNIX)], page 179.

10.5.2.135 UMask Intrinsic (function)

UMask (Mask)
UMask: INTEGER(KIND=1) function.
Mask: INTEGER; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:
Sets the file creation mask to Mask and returns the old value. See umask(2).
Due to the side effects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 8.11.9.254 [UMask
Intrinsic (subroutine)], page 181.

10.5.2.136 Unlink Intrinsic (function)

Unlink(File)
Unlink: INTEGER(KIND=1) function.
File: CHARACTER,; scalar; INTENT(IN).
Intrinsic groups: badu77.
Description:

Unlink the file File. A null character (‘CHAR(0)’) marks the end of the name in File—
otherwise, trailing blanks in File are ignored. Returns 0 on success or a non-zero error code.
See unlink(2).

Due to the side effects performed by this intrinsic, the function form is not recommended.

For information on other intrinsics with the same name: See Section 8.11.9.255 [Unlink
Intrinsic (subroutine)], page 181.

10.5.2.137 ZExt Intrinsic

This intrinsic is not yet implemented. The name is, however, reserved as an intrinsic.
Use ‘EXTERNAL ZExt’ to use this name for an external procedure.

230 Using and Porting GNU Fortran

Chapter 11: Other Compilers 231

11 Other Compilers

An individual Fortran source file can be compiled to an object (‘*.0’) file instead of to
the final program executable. This allows several portions of a program to be compiled
at different times and linked together whenever a new version of the program is needed.
However, it introduces the issue of object compatibility across the various object files (and
libraries, or ‘*.a’ files) that are linked together to produce any particular executable file.

Object compatibility is an issue when combining, in one program, Fortran code compiled
by more than one compiler (or more than one configuration of a compiler). If the compilers
disagree on how to transform the names of procedures, there will normally be errors when
linking such programs. Worse, if the compilers agree on naming, but disagree on issues like
how to pass parameters, return arguments, and lay out COMMON areas, the earliest detected
errors might be the incorrect results produced by the program (and that assumes these
errors are detected, which is not always the case).

Normally, g77 generates code that is object-compatible with code generated by a version
of f2c configured (with, for example, ‘f2c.h’ definitions) to be generally compatible with
g77 as built by gcc. (Normally, £2¢ will, by default, conform to the appropriate config-
uration, but it is possible that older or perhaps even newer versions of £2c, or versions
having certain configuration changes to f2c internals, will produce object files that are
incompatible with g77.)

For example, a Fortran string subroutine argument will become two arguments on the
C side: a char * and an int length.

Much of this compatibility results from the fact that g77 uses the same run-time library,
1libf2c, used by f2c, though g77 gives its version the name 1ibg2c so as to avoid conflicts
when linking, installing them in the same directories, and so on.

Other compilers might or might not generate code that is object-compatible with 1ibg2c
and current g77, and some might offer such compatibility only when explicitly selected via
a command-line option to the compiler.

Note: This portion of the documentation definitely needs a lot of work!

11.1 Dropping f2c¢ Compatibility

Specifying ‘-fno-f2c¢’ allows g77 to generate, in some cases, faster code, by not needing
to allow to the possibility of linking with code compiled by f2c.

For example, this affects how REAL(KIND=1), COMPLEX (KIND=1), and COMPLEX (KIND=2)
functions are called. With ‘-fno-f2c¢’, they are compiled as returning the appropriate gcc
type (float complex__ float complex__ double, in many configurations).

) ——) ——

With ‘-f£2¢’ in force, they are compiled differently (with perhaps slower run-time perfor-
mance) to accommodate the restrictions inherent in £2¢’s use of K&R C as an intermediate
language—REAL (KIND=1) functions return C’s double type, while COMPLEX functions return
void and use an extra argument pointing to a place for the functions to return their values.

It is possible that, in some cases, leaving ‘~ff2¢’ in force might produce faster code than
using ‘-fno-f2c’. Feel free to experiment, but remember to experiment with changing the
way entire programs and their Fortran libraries are compiled at a time, since this sort of

232 Using and Porting GNU Fortran

experimentation affects the interface of code generated for a Fortran source file—that is, it
affects object compatibility.

Note that £2c compatibility is a fairly static target to achieve, though not necessarily
perfectly so, since, like g77, it is still being improved. However, specifying ‘~fno-f2c’ causes
g77 to generate code that will probably be incompatible with code generated by future
versions of g77 when the same option is in force. You should make sure you are always able
to recompile complete programs from source code when upgrading to new versions of g77
or f£2c, especially when using options such as ‘-fno-f2c’.

Therefore, if you are using g77 to compile libraries and other object files for possible
future use and you don’t want to require recompilation for future use with subsequent
versions of g77, you might want to stick with £2c compatibility for now, and carefully
watch for any announcements about changes to the £2¢c/1ibf2c interface that might affect
existing programs (thus requiring recompilation).

It is probable that a future version of g77 will not, by default, generate object files
compatible with £2c, and that version probably would no longer use 1ibf2c. If you expect
to depend on this compatibility in the long term, use the options ‘-ff2c -ff2c-library’
when compiling all of the applicable code. This should cause future versions of g77 ei-
ther to produce compatible code (at the expense of the availability of some features and
performance), or at the very least, to produce diagnostics.

(The library g77 produces will no longer be named ‘1ibg2c’ when it is no longer generally
compatible with ‘1ibf2c¢’. It will likely be referred to, and, if installed as a distinct library,
named 1ibg77, or some other as-yet-unused name.)

11.2 Compilers Other Than f2c

On systems with Fortran compilers other than £2c and g77, code compiled by g77 is
not expected to work well with code compiled by the native compiler. (This is true for
f2c-compiled objects as well.) Libraries compiled with the native compiler probably will
have to be recompiled with g77 to be used with g77-compiled code.

Reasons for such incompatibilities include:

e There might be differences in the way names of Fortran procedures are translated for
use in the system’s object-file format. For example, the statement ‘CALL FOO’ might be
compiled by g77 to call a procedure the linker 1d sees given the name ‘_foo_’, while
the apparently corresponding statement ‘SUBROUTINE FOO’ might be compiled by the
native compiler to define the linker-visible name ‘_foo’, or ‘{_F00_’, and so on.

e There might be subtle type mismatches which cause subroutine arguments and function
return values to get corrupted.

This is why simply getting g77 to transform procedure names the same way a native
compiler does is not usually a good idea—unless some effort has been made to ensure
that, aside from the way the two compilers transform procedure names, everything else
about the way they generate code for procedure interfaces is identical.

e Native compilers use libraries of private I/O routines which will not be available at
link time unless you have the native compiler—and you would have to explicitly ask
for them.

Chapter 11: Other Compilers 233

For example, on the Sun you would have to add ‘-L/usr/lang/SCx.x -1F77 -1V77’ to
the link command.

234 Using and Porting GNU Fortran

Chapter 12: Other Languages 235

12 Other Languages

Note: This portion of the documentation definitely needs a lot of work!

12.1 Tools and advice for interoperating with C and C++

The following discussion assumes that you are running g77 in £2¢ compatibility mode,
i.e. not using ‘-fno-f2c’. It provides some advice about quick and simple techniques for
linking Fortran and C (or C++), the most common requirement. For the full story consult
the description of code generation. See Chapter 13 [Debugging and Interfacing], page 239.

When linking Fortran and C, it’s usually best to use g77 to do the linking so that the
correct libraries are included (including the maths one). If you're linking with C++ you will
want to add ‘-1stdc++’, ‘-1g++’ or whatever. If you need to use another driver program
(or 1d directly), you can find out what linkage options g77 passes by running ‘g77 -v’.

12.1.1 C Interfacing Tools

Even if you don’t actually use it as a compiler, £2¢ from ftp://ftp.netlib.org/f2c/src,
can be a useful tool when you're interfacing (linking) Fortran and C. See Section 12.1.3
[Generating Skeletons and Prototypes with £2c], page 235.

To use f2c for this purpose you only need retrieve and build the ‘src’ directory from
the distribution, consult the ‘README’ instructions there for machine-specifics, and install
the £2c program on your path.

Something else that might be useful is ‘cfortran.h’ from ftp://zebra.desy.de/cfortran.|j
This is a fairly general tool which can be used to generate interfaces for calling in both
directions between Fortran and C. It can be used in f2c¢ mode with g77—consult its
documentation for details.

12.1.2 Accessing Type Information in C

Generally, C code written to link with g77 code—calling and/or being called from
Fortran—should ‘#include <g2c.h>’ to define the C versions of the Fortran types. Don’t
assume Fortran INTEGER types correspond to C ints, for instance; instead, declare them as
integer, a type defined by ‘g2c.h’. ‘g2c.h’ is installed where gcc will find it by default,
assuming you use a copy of gcc compatible with g77, probably built at the same time as
grT.

12.1.3 Generating Skeletons and Prototypes with f2c

A simple and foolproof way to write g77-callable C routines—e.g. to interface with
an existing library—is to write a file (named, for example, ‘fred.f’) of dummy Fortran
skeletons comprising just the declaration of the routine(s) and dummy arguments plus END
statements. Then run f2c¢ on file ‘fred.f’ to produce ‘fred.c’ into which you can edit
useful code, confident the calling sequence is correct, at least. (There are some errors
otherwise commonly made in generating C interfaces with £2¢ conventions, such as not
using doublereal as the return type of a REAL FUNCTION.)

236 Using and Porting GNU Fortran

f2c also can help with calling Fortran from C, using its ‘-P’ option to generate C pro-
totypes appropriate for calling the Fortran.! If the Fortran code containing any routines
to be called from C is in file ‘joe.f’, use the command f2c -P joe.f to generate the file
‘joe.P’ containing prototype information. #include this in the C which has to call the
Fortran routines to make sure you get it right.

See Section 13.8 [Arrays (DIMENSION)], page 243, for information on the differences
between the way Fortran (including compilers like g77) and C handle arrays.

12.1.4 C++ Considerations

f2c can be used to generate suitable code for compilation with a C++ system using the
‘~C++’ option. The important thing about linking g77-compiled code with C++ is that the
prototypes for the g77 routines must specify C linkage to avoid name mangling. So, use
an ‘extern "C"’ declaration. f2c’s ‘~C++’ option will take care of this when generating
skeletons or prototype files as above, and also avoid clashes with C++ reserved words in
addition to those in C.

12.1.5 Startup Code

Unlike with some runtime systems, it shouldn’t be necessary (unless there are bugs) to
use a Fortran main program unit to ensure the runtime—specifically the I/O system—is
initialized.

However, to use the g77 intrinsics GETARG and IARGC, either the main routine from the
‘libg2c’ library must be used, or the f_setarg routine (new as of egcs version 1.1 and
g77 version 0.5.23) must be called with the appropriate argc and argv arguments prior to
the program calling GETARG or IARGC.

To provide more flexibility for mixed-language programming involving g77 while allowing
for shared libraries, as of egcs version 1.1 and g77 version 0.5.23, g77’s main routine in
libg2c does the following, in order:

1. Calls f_setarg with the incoming argc and argv arguments, in the same order as for
main itself.
This sets up the command-line environment for GETARG and IARGC.

2. Calls f_setsig (with no arguments).
This sets up the signaling and exception environment.

3. Calls f_init (with no arguments).
This initializes the I/O environment, though that should not be necessary, as all I/O
functions in 1ibf2c are believed to call £_init automatically, if necessary.
(A future version of g77 might skip this explicit step, to speed up normal exit of a
program.)

4. Arranges for f_exit to be called (with no arguments) when the program exits.
This ensures that the I/O environment is properly shut down before the program exits
normally. Otherwise, output buffers might not be fully flushed, scratch files might not
be deleted, and so on.

! The files generated like this can also be used for inter-unit consistency checking of dummy
and actual arguments, although the ftnchek tool from ftp://ftp.netlib.org/fortran or
ftp://ftp.dsm.fordham.edu is probably better for this purpose.

Chapter 12: Other Languages 237

The simple way main does this is to call f_exit itself after calling MAIN__ (in the next
step).

However, this does not catch the cases where the program might call exit directly,
instead of using the EXIT intrinsic (implemented as exit_ in 1ibf2c).

So, main attempts to use the operating environment’s onexit or atexit facility, if
available, to cause f_exit to be called automatically upon any invocation of exit.

5. Calls MAIN__ (with no arguments).

This starts executing the Fortran main program unit for the application. (Both g77
and f2c currently compile a main program unit so that its global name is MAIN__.)

6. If no onexit or atexit is provided by the system, calls f_exit.
7. Calls exit with a zero argument, to signal a successful program termination.

8. Returns a zero value to the caller, to signal a successful program termination, in case
exit doesn’t exit on the system.

All of the above names are C extern names, i.e. not mangled.

When using the main procedure provided by g77 without a Fortran main program unit,
you need to provide MAIN__ as the entry point for your C code. (Make sure you link the
object file that defines that entry point with the rest of your program.)

To provide your own main procedure in place of g77’s, make sure you specify the object
file defining that procedure before ‘-1g2c’ on the g77 command line. Since the ‘-1g2c’
option is implicitly provided, this is usually straightforward. (Use the ‘--verbose’ option
to see how and where g77 implicitly adds ‘-1g2c’ in a command line that will link the
program. Feel free to specify ‘-1g2c’ explicitly, as appropriate.)

However, when providing your own main, make sure you perform the appropriate tasks
in the appropriate order. For example, if your main does not call f_setarg, make sure the
rest of your application does not call GETARG or TARGC.

And, if your main fails to ensure that f_exit is called upon program exit, some files
might end up incompletely written, some scratch files might be left lying around, and some
existing files being written might be left with old data not properly truncated at the end.

Note that, generally, the g77 operating environment does not depend on a procedure
named MAIN__ actually being called prior to any other g77-compiled code. That is, MAIN__
does not, itself, set up any important operating-environment characteristics upon which
other code might depend. This might change in future versions of g77, with appropriate
notification in the release notes.

For more information, consult the source code for the above routines. These are
in ‘gcc/1ibf2c/1ibF77/’, named ‘main.c’, ‘setarg.c’, ‘setsig.c’, ‘getarg_.c’, and
‘iargc_.c’.

Also, the file ‘gcc/gecc/f/com. c’ contains the code g77 uses to open-code (inline) refer-
ences to TARGC.

238 Using and Porting GNU Fortran

Chapter 13: Debugging and Interfacing 239

13 Debugging and Interfacing

GNU Fortran currently generates code that is object-compatible with the £2¢ converter.
Also, it avoids limitations in the current GBE, such as the inability to generate a procedure
with multiple entry points, by generating code that is structured differently (in terms of
procedure names, scopes, arguments, and so on) than might be expected.

As a result, writing code in other languages that calls on, is called by, or shares in-
memory data with g77-compiled code generally requires some understanding of the way
g77 compiles code for various constructs.

Similarly, using a debugger to debug g77-compiled code, even if that debugger supports
native Fortran debugging, generally requires this sort of information.

This section describes some of the basic information on how g77 compiles code for
constructs involving interfaces to other languages and to debuggers.

Caution: Much or all of this information pertains to only the current release of g77,
sometimes even to using certain compiler options with g77 (such as ‘-fno-f2c’). Do not
write code that depends on this information without clearly marking said code as non-
portable and subject to review for every new release of g77. This information is provided
primarily to make debugging of code generated by this particular release of g77 easier for
the user, and partly to make writing (generally nonportable) interface code easier. Both of
these activities require tracking changes in new version of g77 as they are installed, because
new versions can change the behaviors described in this section.

13.1 Main Program Unit (PROGRAM)

When g77 compiles a main program unit, it gives it the public procedure name MAIN__.
The 1ibg2c library has the actual main() procedure as is typical of C-based environments,
and it is this procedure that performs some initial start-up activity and then calls MAIN__.

Generally, g77 and libg2c are designed so that you need not include a main program
unit written in Fortran in your program—it can be written in C or some other language.
Especially for I/O handling, this is the case, although g77 version 0.5.16 includes a bug fix
for 1ibg2c that solved a problem with using the OPEN statement as the first Fortran 1/O
activity in a program without a Fortran main program unit.

However, if you don’t intend to use g77 (or f2c) to compile your main program
unit—that is, if you intend to compile a main() procedure using some other language—you
should carefully examine the code for main() in libg2c, found in the source file
‘gcc/1libf2c/1ibF77/main.c’, to see what kinds of things might need to be done by your
main() in order to provide the Fortran environment your Fortran code is expecting.

For example, 1ibg2c’s main() sets up the information used by the IARGC and GETARG
intrinsics. Bypassing 1ibg2c’s main () without providing a substitute for this activity would
mean that invoking TARGC and GETARG would produce undefined results.

When debugging, one implication of the fact that main (), which is the place where the
debugged program “starts” from the debugger’s point of view, is in libg2c is that you
won’t be starting your Fortran program at a point you recognize as your Fortran code.

The standard way to get around this problem is to set a break point (a one-time, or
temporary, break point will do) at the entrance to MAIN and then run the program. A
convenient way to do so is to add the gdb command

-

240 Using and Porting GNU Fortran

tbreak MAIN__
to the file ‘. gdbinit’ in the directory in which you're debugging (using gdb).

After doing this, the debugger will see the current execution point of the program as at
the beginning of the main program unit of your program.

Of course, if you really want to set a break point at some other place in your program
and just start the program running, without first breaking at MAIN that should work
fine.

-

13.2 Procedures (SUBROUTINE and FUNCTION)

Currently, g77 passes arguments via reference—specifically, by passing a pointer to the
location in memory of a variable, array, array element, a temporary location that holds the
result of evaluating an expression, or a temporary or permanent location that holds the
value of a constant.

Procedures that accept CHARACTER arguments are implemented by g77 so that each
CHARACTER argument has two actual arguments.

The first argument occupies the expected position in the argument list and has the
user-specified name. This argument is a pointer to an array of characters, passed by the
caller.

The second argument is appended to the end of the user-specified calling sequence and
is named ‘__g77_length_x’, where x is the user-specified name. This argument is of the C
type ftnlen (see ‘gcc/1ibf2c/g2c.h.in’ for information on that type) and is the number
of characters the caller has allocated in the array pointed to by the first argument.

A procedure will ignore the length argument if ‘X’ is not declared CHARACTER* (*), be-
cause for other declarations, it knows the length. Not all callers necessarily “know” this,
however, which is why they all pass the extra argument.

The contents of the CHARACTER argument are specified by the address passed in the first
argument (named after it). The procedure can read or write these contents as appropriate.

When more than one CHARACTER argument is present in the argument list, the
length arguments are appended in the order the original arguments appear. So ‘CALL
FOO(’HI’,’THERE’)’ is implemented in C as ‘foo("hi","there",2,5);’, ignoring the
fact that g77 does not provide the trailing null bytes on the constant strings (f2c does
provide them, but they are unnecessary in a Fortran environment, and you should not
expect them to be there).

Note that the above information applies to CHARACTER variables and arrays only. It does
not apply to external CHARACTER functions or to intrinsic CHARACTER functions. That is, no
second length argument is passed to ‘FO0’ in this case:

CHARACTER X
EXTERNAL X
CALL F0O(X)

Nor does ‘FO0’ expect such an argument in this case:

SUBROUTINE F0O0(X)
CHARACTER X
EXTERNAL X

Chapter 13: Debugging and Interfacing 241

Because of this implementation detail, if a program has a bug such that there is disagree-
ment as to whether an argument is a procedure, and the type of the argument is CHARACTER,
subtle symptoms might appear.

13.3 Functions (FUNCTION and RETURN)

g77 handles in a special way functions that return the following types:
e CHARACTER
e COMPLEX
e REAL(KIND=1)

For CHARACTER, g77 implements a subroutine (a C function returning void) with two
arguments prepended: ‘__g77_result’, which the caller passes as a pointer to a char
array expected to hold the return value, and ‘__g77_length’, which the caller passes as an
ftnlen value specifying the length of the return value as declared in the calling program.
For CHARACTER* (), the called function uses ‘__g77_length’ to determine the size of the
array that ‘__g77_result’ points to; otherwise, it ignores that argument.

For COMPLEX, when ‘-ff2c’ is in force, g77 implements a subroutine with one argument
prepended: ‘__g77_result’, which the caller passes as a pointer to a variable of the type
of the function. The called function writes the return value into this variable instead of
returning it as a function value. When ‘~fno-£f2c’ is in force, g77 implements a COMPLEX
function as gece’s ‘__complex__ float’ or ‘__complex__ double’ function (or an emulation
thereof, when ‘-femulate-complex’ is in effect), returning the result of the function in the
same way as gcc would.

For REAL(KIND=1), when ‘-ff2c’ is in force, g77 implements a function that actu-
ally returns REAL(KIND=2) (typically C’s double type). When ‘-fno-f2c’ is in force,
REAL (KIND=1) functions return float.

13.4 Names

Fortran permits each implementation to decide how to represent names as far as how
they’re seen in other contexts, such as debuggers and when interfacing to other languages,
and especially as far as how casing is handled.

External names—names of entities that are public, or “accessible”, to all modules in
a program—normally have an underscore (‘_’) appended by g77, to generate code that
is compatible with f2c. External names include names of Fortran things like common
blocks, external procedures (subroutines and functions, but not including statement func-
tions, which are internal procedures), and entry point names.

However, use of the ‘~fno-underscoring’ option disables this kind of transformation
of external names (though inhibiting the transformation certainly improves the chances
of colliding with incompatible externals written in other languages—but that might be
intentional.

When ‘-funderscoring’ is in force, any name (external or local) that already has at

least one underscore in it is implemented by g77 by appending two underscores. (This
second underscore can be disabled via the ‘~fno-second-underscore’ option.) External

242 Using and Porting GNU Fortran

names are changed this way for £2c compatibility. Local names are changed this way to
avoid collisions with external names that are different in the source code—f2c does the same
thing, but there’s no compatibility issue there except for user expectations while debugging.

For example:
Max_Cost = 0O

Here, a user would, in the debugger, refer to this variable using the name ‘max_cost__" (or
‘MAX_COST__’ or ‘Max_Cost__’, as described below). (We hope to improve g77 in this regard
in the future—don’t write scripts depending on this behavior! Also, consider experimenting
with the ‘-fno-underscoring’ option to try out debugging without having to massage
names by hand like this.)

g77 provides a number of command-line options that allow the user to control how case
mapping is handled for source files. The default is the traditional UNIX model for Fortran
compilers—names are mapped to lower case. Other command-line options can be specified
to map names to upper case, or to leave them exactly as written in the source file.

For example:
Foo = 9.436
Here, it is normally the case that the variable assigned will be named ‘foo’. This would be
the name to enter when using a debugger to access the variable.
However, depending on the command-line options specified, the name implemented by
g77 might instead be ‘FO0’ or even ‘Foo’, thus affecting how debugging is done.
Also:
Call Foo
This would normally call a procedure that, if it were in a separate C program, be defined
starting with the line:
void foo_Q)
However, g77 command-line options could be used to change the casing of names, result-
ing in the name ‘FO0_’ or ‘Foo_’ being given to the procedure instead of ‘foo_’, and the

‘~fno-underscoring’ option could be used to inhibit the appending of the underscore to
the name.

13.5 Common Blocks (COMMON)

g77 names and lays out COMMON areas the same way f2c does, for compatibility with
f2c.

13.6 Local Equivalence Areas (EQUIVALENCE)

g77 treats storage-associated areas involving a COMMON block as explained in the section
on common blocks.

A local EQUIVALENCE area is a collection of variables and arrays connected to each other
in any way via EQUIVALENCE, none of which are listed in a COMMON statement.
(Note: g77 version 0.5.18 and earlier chose the name for x using a different method

when more than one name was in the list of names of entities placed at the beginning of the
array. Though the documentation specified that the first name listed in the EQUIVALENCE

Chapter 13: Debugging and Interfacing 243

statements was chosen for x, g77 in fact chose the name using a method that was so
complicated, it seemed easier to change it to an alphabetical sort than to describe the
previous method in the documentation.)

13.7 Complex Variables (COMPLEX)

As of 0.5.20, g77 defaults to handling COMPLEX types (and related intrinsics, constants,
functions, and so on) in a manner that makes direct debugging involving these types in
Fortran language mode difficult.

Essentially, g77 implements these types using an internal construct similar to C’s struct,
at least as seen by the gcc back end.

Currently, the back end, when outputting debugging info with the compiled code for the
assembler to digest, does not detect these struct types as being substitutes for Fortran
complex. As a result, the Fortran language modes of debuggers such as gdb see these types
as C struct types, which they might or might not support.

Until this is fixed, switch to C language mode to work with entities of COMPLEX type and
then switch back to Fortran language mode afterward. (In gdb, this is accomplished via
‘set lang ¢’ and either ‘set lang fortran’ or ‘set lang auto’.)

13.8 Arrays (DIMENSION)

Fortran uses “column-major ordering” in its arrays. This differs from other languages,
such as C, which use “row-major ordering”. The difference is that, with Fortran, array
elements adjacent to each other in memory differ in the first subscript instead of the last;
‘A(5,10,20)’ immediately follows ‘A(4,10,20)’, whereas with row-major ordering it would
follow ‘A(5,10,19)".

This consideration affects not only interfacing with and debugging Fortran code, it can
greatly affect how code is designed and written, especially when code speed and size is a
concern.

Fortran also differs from C, a popular language for interfacing and to support directly
in debuggers, in the way arrays are treated. In C, arrays are single-dimensional and have
interesting relationships to pointers, neither of which is true for Fortran. As a result, dealing
with Fortran arrays from within an environment limited to C concepts can be challenging.

For example, accessing the array element ‘A(5,10,20)’ is easy enough in Fortran (use
‘A(5,10,20)’), but in C some difficult machinations are needed. First, C would treat the
A array as a single-dimension array. Second, C does not understand low bounds for arrays
as does Fortran. Third, C assumes a low bound of zero (0), while Fortran defaults to a low
bound of one (1) and can supports an arbitrary low bound. Therefore, calculations must be
done to determine what the C equivalent of ‘A(5,10,20)’ would be, and these calculations
require knowing the dimensions of ‘A’.

For ‘DIMENSION A(2:11,21,0:29)’, the calculation of the offset of ‘A(5,10,20)’ would
be:
(5-2)
+ (10-1)*(11-2+1)
+ (20-0)*(11-2+1)*(21-1+1)

244 Using and Porting GNU Fortran

= 4293
So the C equivalent in this case would be ‘a[4293]°.

When using a debugger directly on Fortran code, the C equivalent might not work,
because some debuggers cannot understand the notion of low bounds other than zero.
However, unlike f2¢, g77 does inform the GBE that a multi-dimensional array (like ‘A’ in
the above example) is really multi-dimensional, rather than a single-dimensional array, so
at least the dimensionality of the array is preserved.

Debuggers that understand Fortran should have no trouble with non-zero low bounds,
but for non-Fortran debuggers, especially C debuggers, the above example might have a
C equivalent of ‘a[4305]°. This calculation is arrived at by eliminating the subtraction
of the lower bound in the first parenthesized expression on each line—that is, for ‘(5-2)’
substitute ‘(5)’, for ‘(10-1)" substitute ‘(10)’, and for ‘(20-0)’ substitute ‘(20)’. Actually,
the implication of this can be that the expression ‘*(&a[2] [1] [0] + 4293)’ works fine, but
that ‘a[20] [10] [5]° produces the equivalent of ‘*(&a[0] [0] [0] + 4305)’ because of the
missing lower bounds.

Come to think of it, perhaps the behavior is due to the debugger internally compensating
for the lower bounds by offsetting the base address of ‘a’, leaving ‘&a’ set lower, in this case,
than ‘&€a[2] [1] [0]’ (the address of its first element as identified by subscripts equal to the
corresponding lower bounds).

You know, maybe nobody really needs to use arrays.

13.9 Adjustable Arrays (DIMENSION)

Adjustable and automatic arrays in Fortran require the implementation (in this case,
the g77 compiler) to “memorize” the expressions that dimension the arrays each time the
procedure is invoked. This is so that subsequent changes to variables used in those expres-
sions, made during execution of the procedure, do not have any effect on the dimensions of
those arrays.

For example:

REAL ARRAY(5)
DATA ARRAY/5%2/
CALL X(ARRAY, 5)
END

SUBROUTINE X(A, N)
DIMENSION A(N)

N = 20

PRINT *, N, A

END

Here, the implementation should, when running the program, print something like:
20 2. 2. 2. 2. 2.

Note that this shows that while the value of ‘N’ was successfully changed, the size of the ‘A’
array remained at 5 elements.

To support this, g77 generates code that executes before any user code (and before the
internally generated computed GOTO to handle alternate entry points, as described below)
that evaluates each (nonconstant) expression in the list of subscripts for an array, and saves

Chapter 13: Debugging and Interfacing 245

the result of each such evaluation to be used when determining the size of the array (instead
of re-evaluating the expressions).

So, in the above example, when ‘X’ is first invoked, code is executed that copies the
value of ‘N’ to a temporary. And that same temporary serves as the actual high bound for
the single dimension of the ‘A’ array (the low bound being the constant 1). Since the user
program cannot (legitimately) change the value of the temporary during execution of the
procedure, the size of the array remains constant during each invocation.

For alternate entry points, the code g77 generates takes into account the possibility that
a dummy adjustable array is not actually passed to the actual entry point being invoked
at that time. In that case, the public procedure implementing the entry point passes to
the master private procedure implementing all the code for the entry points a NULL pointer
where a pointer to that adjustable array would be expected. The g77-generated code doesn’t
attempt to evaluate any of the expressions in the subscripts for an array if the pointer to that
array is NULL at run time in such cases. (Don’t depend on this particular implementation
by writing code that purposely passes NULL pointers where the callee expects adjustable
arrays, even if you know the callee won’t reference the arrays—mnor should you pass NULL
pointers for any dummy arguments used in calculating the bounds of such arrays or leave
undefined any values used for that purpose in COMMON-—because the way g77 implements
these things might change in the future!)

13.10 Alternate Entry Points (ENTRY)

The GBE does not understand the general concept of alternate entry points as Fortran
provides via the ENTRY statement. g77 gets around this by using an approach to compiling
procedures having at least one ENTRY statement that is almost identical to the approach
used by f2c. (An alternate approach could be used that would probably generate faster,
but larger, code that would also be a bit easier to debug.)

Information on how g77 implements ENTRY is provided for those trying to debug such
code. The choice of implementation seems unlikely to affect code (compiled in other lan-
guages) that interfaces to such code.

g77 compiles exactly one public procedure for the primary entry point of a procedure
plus each ENTRY point it specifies, as usual. That is, in terms of the public interface, there
is no difference between

SUBROUTINE X
END
SUBROUTINE Y
END

and:

SUBROUTINE X
ENTRY Y
END

The difference between the above two cases lies in the code compiled for the ‘X’ and ‘Y’
procedures themselves, plus the fact that, for the second case, an extra internal procedure
is compiled.

246 Using and Porting GNU Fortran

For every Fortran procedure with at least one ENTRY statement, g77 compiles an extra
procedure named ‘__g77_masterfun_x’, where x is the name of the primary entry point
(which, in the above case, using the standard compiler options, would be ‘x_" in C).

This extra procedure is compiled as a private procedure—that is, a procedure not ac-
cessible by name to separately compiled modules. It contains all the code in the program
unit, including the code for the primary entry point plus for every entry point. (The code
for each public procedure is quite short, and explained later.)

The extra procedure has some other interesting characteristics.

The argument list for this procedure is invented by g77. It contains a single integer
argument named ‘__g77_which_entrypoint’, passed by value (as in Fortran’s ‘%VAL()’
intrinsic), specifying the entry point index—0 for the primary entry point, 1 for the first
entry point (the first ENTRY statement encountered), 2 for the second entry point, and so
on.

It also contains, for functions returning CHARACTER and (when ‘-ff2c’ is in effect)
COMPLEX functions, and for functions returning different types among the ENTRY statements
(e.g. ‘REAL FUNCTION R()’ containing ‘ENTRY I()’), an argument named ‘__g77_result’
that is expected at run time to contain a pointer to where to store the result of the entry
point. For CHARACTER functions, this storage area is an array of the appropriate number
of characters; for COMPLEX functions, it is the appropriate area for the return type; for
multiple-return-type functions, it is a union of all the supported return types (which cannot
include CHARACTER, since combining CHARACTER and non-CHARACTER return types via ENTRY
in a single function is not supported by g77).

For CHARACTER functions, the ‘__g77_result’ argument is followed by yet another argu-
ment named ‘__g77_length’ that, at run time, specifies the caller’s expected length of the
returned value. Note that only CHARACTER* (*) functions and entry points actually make
use of this argument, even though it is always passed by all callers of public CHARACTER func-
tions (since the caller does not generally know whether such a function is CHARACTER* ()
or whether there are any other callers that don’t have that information).

The rest of the argument list is the union of all the arguments specified for all the entry
points (in their usual forms, e.g. CHARACTER arguments have extra length arguments, all
appended at the end of this list). This is considered the “master list” of arguments.

The code for this procedure has, before the code for the first executable statement, code
much like that for the following Fortran statement:
GOTO (100000,100001,100002), __g77_which_entrypoint
100000 ...code for primary entry point...
100001 ...code immediately following first ENTRY statement...
100002 ...code immediately following second ENTRY statement...
(Note that invalid Fortran statement labels and variable names are used in the above ex-
ample to highlight the fact that it represents code generated by the g77 internals, not code
to be written by the user.)
It is this code that, when the procedure is called, picks which entry point to start
executing.
Getting back to the public procedures (‘x’ and ‘Y’ in the original example), those proce-
dures are fairly simple. Their interfaces are just like they would be if they were self-contained
procedures (without ENTRY), of course, since that is what the callers expect. Their code

Chapter 13: Debugging and Interfacing 247

consists of simply calling the private procedure, described above, with the appropriate extra
arguments (the entry point index, and perhaps a pointer to a multiple-type- return vari-
able, local to the public procedure, that contains all the supported returnable non-character
types). For arguments that are not listed for a given entry point that are listed for other en-
try points, and therefore that are in the “master list” for the private procedure, null pointers
(in C, the NULL macro) are passed. Also, for entry points that are part of a multiple-type-
returning function, code is compiled after the call of the private procedure to extract from
the multi-type union the appropriate result, depending on the type of the entry point in
question, returning that result to the original caller.

When debugging a procedure containing alternate entry points, you can either set a
break point on the public procedure itself (e.g. a break point on ‘X’ or ‘Y’) or on the private
procedure that contains most of the pertinent code (e.g. ‘__g77_masterfun_x’). If you do
the former, you should use the debugger’s command to “step into” the called procedure
to get to the actual code; with the latter approach, the break point leaves you right at
the actual code, skipping over the public entry point and its call to the private procedure
(unless you have set a break point there as well, of course).

Further, the list of dummy arguments that is visible when the private procedure is active
is going to be the expanded version of the list for whichever particular entry point is active,
as explained above, and the way in which return values are handled might well be different
from how they would be handled for an equivalent single-entry function.

13.11 Alternate Returns (SUBROUTINE and RETURN)

Subroutines with alternate returns (e.g. ‘SUBROUTINE X ()’ and ‘CALL X(*50)’) are im-
plemented by g77 as functions returning the C int type. The actual alternate-return
arguments are omitted from the calling sequence. Instead, the caller uses the return value
to do a rough equivalent of the Fortran computed-GOTO statement, as in ‘GOT0 (50), X()’in
the example above (where ‘X’ is quietly declared as an INTEGER (KIND=1) function), and the
callee just returns whatever integer is specified in the RETURN statement for the subroutine
For example, ‘RETURN 1’ is implemented as ‘X = 1’ followed by ‘RETURN’ in C, and ‘RETURN’
by itself is ‘X = 0" and ‘RETURN’).

13.12 Assigned Statement Labels (ASSIGN and GOTO)

For portability to machines where a pointer (such as to a label, which is how g77 im-
plements ASSIGN and its relatives, the assigned-GOTO and assigned-FORMAT-I/O statements)
is wider (bitwise) than an INTEGER(KIND=1), g77 uses a different memory location to hold
the ASSIGNed value of a variable than it does the numerical value in that variable, unless
the variable is wide enough (can hold enough bits).

In particular, while g77 implements

I =10
as, in C notation, ‘1 = 10;’, it implements
ASSIGN 10 TO I

as, in GNU’s extended C notation (for the label syntax), ‘__g77_ASSIGN_I = &&L10;’ (where
‘L10’ is just a massaging of the Fortran label ‘10’ to make the syntax C-like; g77 doesn’t

248 Using and Porting GNU Fortran

actually generate the name ‘L10’° or any other name like that, since debuggers cannot access
labels anyway).

While this currently means that an ASSIGN statement does not overwrite the numeric
contents of its target variable, do not write any code depending on this feature. g77
has already changed this implementation across versions and might do so in the future.
This information is provided only to make debugging Fortran programs compiled with
the current version of g77 somewhat easier. If there’s no debugger-visible variable named
‘__g77_ASSIGN_I’ in a program unit that does ‘ASSIGN 10 TO I’, that probably means g77
has decided it can store the pointer to the label directly into ‘I’ itself.

See Section 9.9.7 [Ugly Assigned Labels|, page 199, for information on a command-line
option to force g77 to use the same storage for both normal and assigned-label uses of a
variable.

13.13 Run-time Library Errors

The 1ibg2c library currently has the following table to relate error code numbers, re-
turned in IOSTAT= variables, to messages. This information should, in future versions of
this document, be expanded upon to include detailed descriptions of each message.

In line with good coding practices, any of the numbers in the list below should not be
directly written into Fortran code you write. Instead, make a separate INCLUDE file that
defines PARAMETER names for them, and use those in your code, so you can more easily
change the actual numbers in the future.

The information below is culled from the definition of F_err in ‘f/runtime/1ibI77/err.c’l
in the g77 source tree.

100: "error in format"

101: "illegal unit number"

102: "formatted io not allowed"
103: "unformatted io not allowed"
104: "direct io not allowed"

105: "sequential io not allowed"
106: "can’t backspace file"

107: "null file name"

108: "can’t stat file"

109: "unit not connected"

110: "off end of record"

111: "truncation failed in endfile"
112: "incomprehensible list input"
113: "out of free space"

114: "unit not connected"

115: "read unexpected character"
116: "bad logical input field"
117: "bad variable type"

118: "bad namelist name"

119: "variable not in namelist"
120: "no end record"

121: "variable count incorrect"
122: "subscript for scalar variable"

Chapter 13: Debugging and Interfacing 249

123: "invalid array section"

124: "substring out of bounds"

125: "subscript out of bounds"

126: "can’t read file"

127: "can’t write file"

128: "’new’ file exists"

129: "can’t append to file"

130: