
Installing GCC
For gcc version 4.6.4

(GCC)

Copyright c© 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, the Front-Cover texts being (a) (see
below), and with the Back-Cover Texts being (b) (see below). A copy of the license is
included in the section entitled “GNU Free Documentation License”.
(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

./gfdl.html

i

Table of Contents

1 Installing GCC . 1

2 Prerequisites . 3

3 Downloading GCC . 9

4 Installing GCC: Configuration 11

5 Building . 35
5.1 Building a native compiler . 35
5.2 Building a cross compiler . 38
5.3 Building in parallel . 39
5.4 Building the Ada compiler . 39
5.5 Building with profile feedback . 39

6 Installing GCC: Testing . 41
6.1 How can you run the testsuite on selected tests? 41
6.2 Passing options and running multiple testsuites 42
6.3 Additional testing for Java Class Libraries . 42
6.4 How to interpret test results . 43
6.5 Submitting test results . 43

7 Installing GCC: Final installation 45

8 Installing GCC: Binaries . 47

9 Host/target specific installation notes for GCC
. 49

10 Old installation documentation 71
10.1 Configurations Supported by GCC . 71

GNU Free Documentation License 75
ADDENDUM: How to use this License for your documents 82

Chapter 1: Installing GCC 1

1 Installing GCC

The latest version of this document is always available at http://gcc.gnu.org/install/.
This document describes the generic installation procedure for GCC as well as detailing

some target specific installation instructions.
GCC includes several components that previously were separate distributions with their

own installation instructions. This document supersedes all package specific installation
instructions.

Before starting the build/install procedure please check the Chapter 9 [Specific], page 49.
We recommend you browse the entire generic installation instructions before you proceed.

Lists of successful builds for released versions of GCC are available at
http://gcc.gnu.org/buildstat.html. These lists are updated as new information
becomes available.

The installation procedure itself is broken into five steps.
Please note that GCC does not support ‘make uninstall’ and probably won’t do so in

the near future as this would open a can of worms. Instead, we suggest that you install
GCC into a directory of its own and simply remove that directory when you do not need
that specific version of GCC any longer, and, if shared libraries are installed there as well,
no more binaries exist that use them.

http://gcc.gnu.org/install/
http://gcc.gnu.org/buildstat.html

Chapter 2: Prerequisites 3

2 Prerequisites

GCC requires that various tools and packages be available for use in the build procedure.
Modifying GCC sources requires additional tools described below.

Tools/packages necessary for building GCC

ISO C90 compiler
Necessary to bootstrap GCC, although versions of GCC prior to 3.4 also allow
bootstrapping with a traditional (K&R) C compiler.
To build all languages in a cross-compiler or other configuration where 3-stage
bootstrap is not performed, you need to start with an existing GCC binary
(version 2.95 or later) because source code for language frontends other than C
might use GCC extensions.

GNAT
In order to build the Ada compiler (GNAT) you must already have GNAT in-
stalled because portions of the Ada frontend are written in Ada (with GNAT
extensions.) Refer to the Ada installation instructions for more specific infor-
mation.

A “working” POSIX compatible shell, or GNU bash
Necessary when running configure because some /bin/sh shells have bugs
and may crash when configuring the target libraries. In other cases, /bin/sh
or ksh have disastrous corner-case performance problems. This can cause target
configure runs to literally take days to complete in some cases.
So on some platforms /bin/ksh is sufficient, on others it isn’t. See the
host/target specific instructions for your platform, or use bash to be sure.
Then set CONFIG_SHELL in your environment to your “good” shell prior to
running configure/make.
zsh is not a fully compliant POSIX shell and will not work when configuring
GCC.

A POSIX or SVR4 awk
Necessary for creating some of the generated source files for GCC. If in doubt,
use a recent GNU awk version, as some of the older ones are broken. GNU awk
version 3.1.5 is known to work.

GNU binutils
Necessary in some circumstances, optional in others. See the host/target spe-
cific instructions for your platform for the exact requirements.

gzip version 1.2.4 (or later) or
bzip2 version 1.0.2 (or later)

Necessary to uncompress GCC tar files when source code is obtained via FTP
mirror sites.

GNU make version 3.80 (or later)
You must have GNU make installed to build GCC.

4 Installing GCC

GNU tar version 1.14 (or later)
Necessary (only on some platforms) to untar the source code. Many systems’
tar programs will also work, only try GNU tar if you have problems.

Perl version 5.6.1 (or later)
Necessary when targetting Darwin, building ‘libstdc++’, and not using
‘--disable-symvers’. Necessary when targetting Solaris 2 with Sun ld and
not using ‘--disable-symvers’. A helper script needs ‘Glob.pm’, which is
missing from perl 5.005 included in Solaris 8. The bundled perl in Solaris 9
and up works.
Necessary when regenerating ‘Makefile’ dependencies in libiberty. Necessary
when regenerating ‘libiberty/functions.texi’. Necessary when generating
manpages from Texinfo manuals. Used by various scripts to generate some files
included in SVN (mainly Unicode-related and rarely changing) from source
tables.

jar, or InfoZIP (zip and unzip)
Necessary to build libgcj, the GCJ runtime.

Several support libraries are necessary to build GCC, some are required, others optional.
While any sufficiently new version of required tools usually work, library requirements are
generally stricter. Newer versions may work in some cases, but it’s safer to use the exact
versions documented. We appreciate bug reports about problems with newer versions,
though.

GNU Multiple Precision Library (GMP) version 4.3.2 (or later)
Necessary to build GCC. If you do not have it installed in your library search
path, you will have to configure with the ‘--with-gmp’ configure option. See
also ‘--with-gmp-lib’ and ‘--with-gmp-include’. Alternatively, if a GMP
source distribution is found in a subdirectory of your GCC sources named ‘gmp’,
it will be built together with GCC.

MPFR Library version 2.4.2 (or later)
Necessary to build GCC. It can be downloaded from http://www.mpfr.org/.
The ‘--with-mpfr’ configure option should be used if your MPFR Library is
not installed in your default library search path. See also ‘--with-mpfr-lib’
and ‘--with-mpfr-include’. Alternatively, if a MPFR source distribution is
found in a subdirectory of your GCC sources named ‘mpfr’, it will be built
together with GCC.

MPC Library version 0.8.1 (or later)
Necessary to build GCC. It can be downloaded from http://www.multiprecision.org/.
The ‘--with-mpc’ configure option should be used if your MPC Library is not
installed in your default library search path. See also ‘--with-mpc-lib’ and
‘--with-mpc-include’. Alternatively, if an MPC source distribution is found
in a subdirectory of your GCC sources named ‘mpc’, it will be built together
with GCC.

Parma Polyhedra Library (PPL) version 0.11
Necessary to build GCC with the Graphite loop optimizations. It can be down-
loaded from http://www.cs.unipr.it/ppl/Download/.

http://www.mpfr.org/
http://www.multiprecision.org/
http://www.cs.unipr.it/ppl/Download/

Chapter 2: Prerequisites 5

The ‘--with-ppl’ configure option should be used if PPL is not installed in
your default library search path.

CLooG-PPL version 0.15 or CLooG 0.16
Necessary to build GCC with the Graphite loop optimizations.
There are two versions available. CLooG-PPL 0.15 as well as
CLooG 0.16. The former is the default right now. It can be
downloaded from ftp://gcc.gnu.org/pub/gcc/infrastructure/ as
‘cloog-ppl-0.15.tar.gz’.

CLooG 0.16 support is still in testing stage, but will be the default in future
GCC releases. It is also available at ftp://gcc.gnu.org/pub/gcc/infrastructure/
as ‘cloog-0.16.1.tar.gz’. To use it add the additional configure option
‘--enable-cloog-backend=isl’. Even if CLooG 0.16 does not use PPL, PPL
is still required for Graphite.

In both cases ‘--with-cloog’ configure option should be used if CLooG is not
installed in your default library search path.

Tools/packages necessary for modifying GCC

autoconf version 2.64
GNU m4 version 1.4.6 (or later)

Necessary when modifying ‘configure.ac’, ‘aclocal.m4’, etc. to regenerate
‘configure’ and ‘config.in’ files.

automake version 1.11.1
Necessary when modifying a ‘Makefile.am’ file to regenerate its associated
‘Makefile.in’.

Much of GCC does not use automake, so directly edit the ‘Makefile.in’ file.
Specifically this applies to the ‘gcc’, ‘intl’, ‘libcpp’, ‘libiberty’, ‘libobjc’
directories as well as any of their subdirectories.

For directories that use automake, GCC requires the latest release in the 1.11
series, which is currently 1.11.1. When regenerating a directory to a newer
version, please update all the directories using an older 1.11 to the latest released
version.

gettext version 0.14.5 (or later)
Needed to regenerate ‘gcc.pot’.

gperf version 2.7.2 (or later)
Necessary when modifying gperf input files, e.g. ‘gcc/cp/cfns.gperf’ to re-
generate its associated header file, e.g. ‘gcc/cp/cfns.h’.

DejaGnu 1.4.4
Expect
Tcl

Necessary to run the GCC testsuite; see the section on testing for details.

ftp://gcc.gnu.org/pub/gcc/infrastructure/
ftp://gcc.gnu.org/pub/gcc/infrastructure/

6 Installing GCC

autogen version 5.5.4 (or later) and
guile version 1.4.1 (or later)

Necessary to regenerate ‘fixinc/fixincl.x’ from ‘fixinc/inclhack.def’ and
‘fixinc/*.tpl’.
Necessary to run ‘make check’ for ‘fixinc’.
Necessary to regenerate the top level ‘Makefile.in’ file from ‘Makefile.tpl’
and ‘Makefile.def’.

Flex version 2.5.4 (or later)
Necessary when modifying ‘*.l’ files.
Necessary to build GCC during development because the generated output files
are not included in the SVN repository. They are included in releases.

Texinfo version 4.7 (or later)
Necessary for running makeinfo when modifying ‘*.texi’ files to test your
changes.
Necessary for running make dvi or make pdf to create printable documentation
in DVI or PDF format. Texinfo version 4.8 or later is required for make pdf.
Necessary to build GCC documentation during development because the gen-
erated output files are not included in the SVN repository. They are included
in releases.

TEX (any working version)
Necessary for running texi2dvi and texi2pdf, which are used when running
make dvi or make pdf to create DVI or PDF files, respectively.

SVN (any version)
SSH (any version)

Necessary to access the SVN repository. Public releases and weekly snapshots
of the development sources are also available via FTP.

GNU diffutils version 2.7 (or later)
Useful when submitting patches for the GCC source code.

patch version 2.5.4 (or later)
Necessary when applying patches, created with diff, to one’s own sources.

ecj1
gjavah

If you wish to modify ‘.java’ files in libjava, you will need to configure with
‘--enable-java-maintainer-mode’, and you will need to have executables
named ecj1 and gjavah in your path. The ecj1 executable should run the
Eclipse Java compiler via the GCC-specific entry point. You can download a
suitable jar from ftp://sourceware.org/pub/java/, or by running the script
contrib/download_ecj.

antlr.jar version 2.7.1 (or later)
antlr binary

If you wish to build the gjdoc binary in libjava, you will need to have an
‘antlr.jar’ library available. The library is searched in system locations but

ftp://sourceware.org/pub/java/

Chapter 2: Prerequisites 7

can be configured with ‘--with-antlr-jar=’ instead. When configuring with
‘--enable-java-maintainer-mode’, you will need to have one of the executa-
bles named cantlr, runantlr or antlr in your path.

Chapter 3: Downloading GCC 9

3 Downloading GCC

GCC is distributed via SVN and FTP tarballs compressed with gzip or bzip2. It is possible
to download a full distribution or specific components.

Please refer to the releases web page for information on how to obtain GCC.
The full distribution includes the C, C++, Objective-C, Fortran, Java, and Ada (in the

case of GCC 3.1 and later) compilers. The full distribution also includes runtime libraries
for C++, Objective-C, Fortran, and Java. In GCC 3.0 and later versions, the GNU compiler
testsuites are also included in the full distribution.

If you choose to download specific components, you must download the core GCC dis-
tribution plus any language specific distributions you wish to use. The core distribution
includes the C language front end as well as the shared components. Each language has
a tarball which includes the language front end as well as the language runtime (when
appropriate).

Unpack the core distribution as well as any language specific distributions in the same
directory.

If you also intend to build binutils (either to upgrade an existing installation or for use in
place of the corresponding tools of your OS), unpack the binutils distribution either in the
same directory or a separate one. In the latter case, add symbolic links to any components
of the binutils you intend to build alongside the compiler (‘bfd’, ‘binutils’, ‘gas’, ‘gprof’,
‘ld’, ‘opcodes’, . . .) to the directory containing the GCC sources.

Likewise the GMP, MPFR and MPC libraries can be automatically built together with
GCC. Unpack the GMP, MPFR and/or MPC source distributions in the directory contain-
ing the GCC sources and rename their directories to ‘gmp’, ‘mpfr’ and ‘mpc’, respectively
(or use symbolic links with the same name).

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/releases.html

Chapter 4: Installing GCC: Configuration 11

4 Installing GCC: Configuration

Like most GNU software, GCC must be configured before it can be built. This document
describes the recommended configuration procedure for both native and cross targets.

We use srcdir to refer to the toplevel source directory for GCC; we use objdir to refer
to the toplevel build/object directory.

If you obtained the sources via SVN, srcdir must refer to the top ‘gcc’ directory, the
one where the ‘MAINTAINERS’ file can be found, and not its ‘gcc’ subdirectory, otherwise
the build will fail.

If either srcdir or objdir is located on an automounted NFS file system, the shell’s
built-in pwd command will return temporary pathnames. Using these can lead to various
sorts of build problems. To avoid this issue, set the PWDCMD environment variable to an
automounter-aware pwd command, e.g., pawd or ‘amq -w’, during the configuration and
build phases.

First, we highly recommend that GCC be built into a separate directory from the sources
which does not reside within the source tree. This is how we generally build GCC; building
where srcdir == objdir should still work, but doesn’t get extensive testing; building where
objdir is a subdirectory of srcdir is unsupported.

If you have previously built GCC in the same directory for a different target machine,
do ‘make distclean’ to delete all files that might be invalid. One of the files this deletes
is ‘Makefile’; if ‘make distclean’ complains that ‘Makefile’ does not exist or issues a
message like “don’t know how to make distclean” it probably means that the directory is
already suitably clean. However, with the recommended method of building in a separate
objdir, you should simply use a different objdir for each target.

Second, when configuring a native system, either cc or gcc must be in your path or
you must set CC in your environment before running configure. Otherwise the configuration
scripts may fail.

To configure GCC:
% mkdir objdir

% cd objdir

% srcdir/configure [options] [target]

Distributor options

If you will be distributing binary versions of GCC, with modifications to the source code,
you should use the options described in this section to make clear that your version contains
modifications.

--with-pkgversion=version
Specify a string that identifies your package. You may wish to include a build
number or build date. This version string will be included in the output of gcc
--version. This suffix does not replace the default version string, only the
‘GCC’ part.

The default value is ‘GCC’.

12 Installing GCC

--with-bugurl=url
Specify the URL that users should visit if they wish to report a bug. You are of
course welcome to forward bugs reported to you to the FSF, if you determine
that they are not bugs in your modifications.
The default value refers to the FSF’s GCC bug tracker.

Target specification

• GCC has code to correctly determine the correct value for target for nearly all native
systems. Therefore, we highly recommend you do not provide a configure target when
configuring a native compiler.

• target must be specified as ‘--target=target ’ when configuring a cross compiler;
examples of valid targets would be m68k-elf, sh-elf, etc.

• Specifying just target instead of ‘--target=target ’ implies that the host defaults to
target.

Options specification

Use options to override several configure time options for GCC. A list of supported options
follows; ‘configure --help’ may list other options, but those not listed below may not
work and should not normally be used.

Note that each ‘--enable’ option has a corresponding ‘--disable’ option and that each
‘--with’ option has a corresponding ‘--without’ option.

--prefix=dirname
Specify the toplevel installation directory. This is the recommended way to
install the tools into a directory other than the default. The toplevel installation
directory defaults to ‘/usr/local’.
We highly recommend against dirname being the same or a subdirectory of
objdir or vice versa. If specifying a directory beneath a user’s home direc-
tory tree, some shells will not expand dirname correctly if it contains the ‘~’
metacharacter; use $HOME instead.
The following standard autoconf options are supported. Normally you should
not need to use these options.

--exec-prefix=dirname
Specify the toplevel installation directory for architecture-
dependent files. The default is ‘prefix ’.

--bindir=dirname
Specify the installation directory for the executables called by users
(such as gcc and g++). The default is ‘exec-prefix/bin’.

--libdir=dirname
Specify the installation directory for object code libraries and in-
ternal data files of GCC. The default is ‘exec-prefix/lib’.

--libexecdir=dirname
Specify the installation directory for internal executables of GCC.
The default is ‘exec-prefix/libexec’.

Chapter 4: Installing GCC: Configuration 13

--with-slibdir=dirname
Specify the installation directory for the shared libgcc library. The
default is ‘libdir ’.

--datarootdir=dirname
Specify the root of the directory tree for read-only architecture-
independent data files referenced by GCC. The default is ‘pre-
fix/share’.

--infodir=dirname
Specify the installation directory for documentation in info format.
The default is ‘datarootdir/info’.

--datadir=dirname
Specify the installation directory for some architecture-independent
data files referenced by GCC. The default is ‘datarootdir ’.

--docdir=dirname
Specify the installation directory for documentation files (other
than Info) for GCC. The default is ‘datarootdir/doc’.

--htmldir=dirname
Specify the installation directory for HTML documentation files.
The default is ‘docdir ’.

--pdfdir=dirname
Specify the installation directory for PDF documentation files. The
default is ‘docdir ’.

--mandir=dirname
Specify the installation directory for manual pages. The default is
‘datarootdir/man’. (Note that the manual pages are only extracts
from the full GCC manuals, which are provided in Texinfo format.
The manpages are derived by an automatic conversion process from
parts of the full manual.)

--with-gxx-include-dir=dirname
Specify the installation directory for G++ header files. The default
depends on other configuration options, and differs between cross
and native configurations.

--program-prefix=prefix
GCC supports some transformations of the names of its programs when in-
stalling them. This option prepends prefix to the names of programs to install
in bindir (see above). For example, specifying ‘--program-prefix=foo-’ would
result in ‘gcc’ being installed as ‘/usr/local/bin/foo-gcc’.

--program-suffix=suffix
Appends suffix to the names of programs to install in bindir (see above). For
example, specifying ‘--program-suffix=-3.1’ would result in ‘gcc’ being in-
stalled as ‘/usr/local/bin/gcc-3.1’.

14 Installing GCC

--program-transform-name=pattern
Applies the ‘sed’ script pattern to be applied to the names of programs to
install in bindir (see above). pattern has to consist of one or more basic
‘sed’ editing commands, separated by semicolons. For example, if you
want the ‘gcc’ program name to be transformed to the installed program
‘/usr/local/bin/myowngcc’ and the ‘g++’ program name to be transformed
to ‘/usr/local/bin/gspecial++’ without changing other program names, you
could use the pattern ‘--program-transform-name=’s/^gcc$/myowngcc/;
s/^g++$/gspecial++/’’ to achieve this effect.

All three options can be combined and used together, resulting in more com-
plex conversion patterns. As a basic rule, prefix (and suffix) are prepended
(appended) before further transformations can happen with a special transfor-
mation script pattern.

As currently implemented, this option only takes effect for native builds; cross
compiler binaries’ names are not transformed even when a transformation is
explicitly asked for by one of these options.

For native builds, some of the installed programs are also installed with
the target alias in front of their name, as in ‘i686-pc-linux-gnu-gcc’.
All of the above transformations happen before the target alias is
prepended to the name—so, specifying ‘--program-prefix=foo-’ and
‘program-suffix=-3.1’, the resulting binary would be installed as
‘/usr/local/bin/i686-pc-linux-gnu-foo-gcc-3.1’.

As a last shortcoming, none of the installed Ada programs are transformed yet,
which will be fixed in some time.

--with-local-prefix=dirname
Specify the installation directory for local include files. The default is
‘/usr/local’. Specify this option if you want the compiler to search
directory ‘dirname/include’ for locally installed header files instead of
‘/usr/local/include’.

You should specify ‘--with-local-prefix’ only if your site has a different
convention (not ‘/usr/local’) for where to put site-specific files.

The default value for ‘--with-local-prefix’ is ‘/usr/local’ regardless of the
value of ‘--prefix’. Specifying ‘--prefix’ has no effect on which directory
GCC searches for local header files. This may seem counterintuitive, but actu-
ally it is logical.

The purpose of ‘--prefix’ is to specify where to install GCC. The local header
files in ‘/usr/local/include’—if you put any in that directory—are not part
of GCC. They are part of other programs—perhaps many others. (GCC installs
its own header files in another directory which is based on the ‘--prefix’ value.)

Both the local-prefix include directory and the GCC-prefix include directory
are part of GCC’s “system include” directories. Although these two directories
are not fixed, they need to be searched in the proper order for the correct
processing of the include next directive. The local-prefix include directory is
searched before the GCC-prefix include directory. Another characteristic of

Chapter 4: Installing GCC: Configuration 15

system include directories is that pedantic warnings are turned off for headers
in these directories.
Some autoconf macros add ‘-I directory ’ options to the compiler command
line, to ensure that directories containing installed packages’ headers are
searched. When directory is one of GCC’s system include directories, GCC
will ignore the option so that system directories continue to be processed in
the correct order. This may result in a search order different from what was
specified but the directory will still be searched.
GCC automatically searches for ordinary libraries using GCC_EXEC_PREFIX.
Thus, when the same installation prefix is used for both GCC and packages,
GCC will automatically search for both headers and libraries. This provides
a configuration that is easy to use. GCC behaves in a manner similar to that
when it is installed as a system compiler in ‘/usr’.
Sites that need to install multiple versions of GCC may not want to use the
above simple configuration. It is possible to use the ‘--program-prefix’,
‘--program-suffix’ and ‘--program-transform-name’ options to install mul-
tiple versions into a single directory, but it may be simpler to use different
prefixes and the ‘--with-local-prefix’ option to specify the location of the
site-specific files for each version. It will then be necessary for users to specify
explicitly the location of local site libraries (e.g., with LIBRARY_PATH).
The same value can be used for both ‘--with-local-prefix’ and ‘--prefix’
provided it is not ‘/usr’. This can be used to avoid the default search of
‘/usr/local/include’.
Do not specify ‘/usr’ as the ‘--with-local-prefix’! The directory you use for
‘--with-local-prefix’ must not contain any of the system’s standard header
files. If it did contain them, certain programs would be miscompiled (including
GNU Emacs, on certain targets), because this would override and nullify the
header file corrections made by the fixincludes script.
Indications are that people who use this option use it based on mistaken ideas
of what it is for. People use it as if it specified where to install part of GCC.
Perhaps they make this assumption because installing GCC creates the direc-
tory.

--enable-shared[=package[,...]]
Build shared versions of libraries, if shared libraries are supported on the target
platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default
on all platforms that support shared libraries.
If a list of packages is given as an argument, build shared libraries only for the
listed packages. For other packages, only static libraries will be built. Pack-
age names currently recognized in the GCC tree are ‘libgcc’ (also known as
‘gcc’), ‘libstdc++’ (not ‘libstdc++-v3’), ‘libffi’, ‘zlib’, ‘boehm-gc’, ‘ada’,
‘libada’, ‘libjava’, ‘libgo’, and ‘libobjc’. Note ‘libiberty’ does not sup-
port shared libraries at all.
Use ‘--disable-shared’ to build only static libraries. Note that
‘--disable-shared’ does not accept a list of package names as argument,
only ‘--enable-shared’ does.

16 Installing GCC

--with-gnu-as
Specify that the compiler should assume that the assembler it finds is the GNU
assembler. However, this does not modify the rules to find an assembler and will
result in confusion if the assembler found is not actually the GNU assembler.
(Confusion may also result if the compiler finds the GNU assembler but has not
been configured with ‘--with-gnu-as’.) If you have more than one assembler
installed on your system, you may want to use this option in connection with
‘--with-as=pathname ’ or ‘--with-build-time-tools=pathname ’.
The following systems are the only ones where it makes a difference whether
you use the GNU assembler. On any other system, ‘--with-gnu-as’ has no
effect.
• ‘hppa1.0-any-any ’
• ‘hppa1.1-any-any ’
• ‘sparc-sun-solaris2.any ’
• ‘sparc64-any-solaris2.any ’

--with-as=pathname
Specify that the compiler should use the assembler pointed to by pathname,
rather than the one found by the standard rules to find an assembler, which
are:
• Unless GCC is being built with a cross compiler, check the

‘libexec/gcc/target/version ’ directory. libexec defaults to
‘exec-prefix/libexec’; exec-prefix defaults to prefix, which defaults
to ‘/usr/local’ unless overridden by the ‘--prefix=pathname ’
switch described above. target is the target system triple, such as
‘sparc-sun-solaris2.7’, and version denotes the GCC version, such as
3.0.

• If the target system is the same that you are building on, check operating
system specific directories (e.g. ‘/usr/ccs/bin’ on Sun Solaris 2).

• Check in the PATH for a tool whose name is prefixed by the target system
triple.

• Check in the PATH for a tool whose name is not prefixed by the target
system triple, if the host and target system triple are the same (in other
words, we use a host tool if it can be used for the target as well).

You may want to use ‘--with-as’ if no assembler is installed in the directories
listed above, or if you have multiple assemblers installed and want to choose
one that is not found by the above rules.

--with-gnu-ld
Same as ‘--with-gnu-as’ but for the linker.

--with-ld=pathname
Same as ‘--with-as’ but for the linker.

--with-stabs
Specify that stabs debugging information should be used instead of whatever
format the host normally uses. Normally GCC uses the same debug format as
the host system.

#with-gnu-as
#with-as

Chapter 4: Installing GCC: Configuration 17

On MIPS based systems and on Alphas, you must specify whether you want
GCC to create the normal ECOFF debugging format, or to use BSD-style stabs
passed through the ECOFF symbol table. The normal ECOFF debug format
cannot fully handle languages other than C. BSD stabs format can handle other
languages, but it only works with the GNU debugger GDB.
Normally, GCC uses the ECOFF debugging format by default; if you prefer
BSD stabs, specify ‘--with-stabs’ when you configure GCC.
No matter which default you choose when you configure GCC, the user can use
the ‘-gcoff’ and ‘-gstabs+’ options to specify explicitly the debug format for
a particular compilation.
‘--with-stabs’ is meaningful on the ISC system on the 386, also, if
‘--with-gas’ is used. It selects use of stabs debugging information embedded
in COFF output. This kind of debugging information supports C++ well;
ordinary COFF debugging information does not.
‘--with-stabs’ is also meaningful on 386 systems running SVR4. It selects use
of stabs debugging information embedded in ELF output. The C++ compiler
currently (2.6.0) does not support the DWARF debugging information normally
used on 386 SVR4 platforms; stabs provide a workable alternative. This requires
gas and gdb, as the normal SVR4 tools can not generate or interpret stabs.

--enable-multiarch
Specify whether to enable or disable multiarch support. The default is to check
for glibc start files in a multiarch location, and enable it if the files are found.
The auto detection is enabled for native builds, and for cross builds configured
with ‘--with-sysroot’. More documentation about multiarch can be found at
http://wiki.debian.org/Multiarch.

--disable-multilib
Specify that multiple target libraries to support different target variants, calling
conventions, etc. should not be built. The default is to build a predefined set
of them.
Some targets provide finer-grained control over which multilibs are built (e.g.,
‘--disable-softfloat’):

arc-*-elf*
biendian.

arm-*-* fpu, 26bit, underscore, interwork, biendian, nofmult.

m68*-*-* softfloat, m68881, m68000, m68020.

mips*-*-*
single-float, biendian, softfloat.

powerpc*-*-*, rs6000*-*-*
aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, bien-
dian, sysv, aix.

--with-multilib-list=list
--without-multilib-list

Specify what multilibs to build. Currently only implemented for sh*-*-*.

http://wiki.debian.org/Multiarch

18 Installing GCC

list is a comma separated list of CPU names. These must be of the form sh* or
m* (in which case they match the compiler option for that processor). The list
should not contain any endian options - these are handled by ‘--with-endian’.
If list is empty, then there will be no multilibs for extra processors. The multilib
for the secondary endian remains enabled.
As a special case, if an entry in the list starts with a ! (exclamation point),
then it is added to the list of excluded multilibs. Entries of this sort should be
compatible with ‘MULTILIB_EXCLUDES’ (once the leading ! has been stripped).
If ‘--with-multilib-list’ is not given, then a default set of multilibs is se-
lected based on the value of ‘--target’. This is usually the complete set of
libraries, but some targets imply a more specialized subset.
Example 1: to configure a compiler for SH4A only, but supporting both endians,
with little endian being the default:

--with-cpu=sh4a --with-endian=little,big --with-multilib-list=

Example 2: to configure a compiler for both SH4A and SH4AL-DSP, but with
only little endian SH4AL:

--with-cpu=sh4a --with-endian=little,big \

--with-multilib-list=sh4al,!mb/m4al

--with-endian=endians
Specify what endians to use. Currently only implemented for sh*-*-*.
endians may be one of the following:

big Use big endian exclusively.

little Use little endian exclusively.

big,little
Use big endian by default. Provide a multilib for little endian.

little,big
Use little endian by default. Provide a multilib for big endian.

--enable-threads
Specify that the target supports threads. This affects the Objective-C compiler
and runtime library, and exception handling for other languages like C++ and
Java. On some systems, this is the default.
In general, the best (and, in many cases, the only known) threading model
available will be configured for use. Beware that on some systems, GCC has
not been taught what threading models are generally available for the system.
In this case, ‘--enable-threads’ is an alias for ‘--enable-threads=single’.

--disable-threads
Specify that threading support should be disabled for the system. This is an
alias for ‘--enable-threads=single’.

--enable-threads=lib
Specify that lib is the thread support library. This affects the Objective-C
compiler and runtime library, and exception handling for other languages like
C++ and Java. The possibilities for lib are:

Chapter 4: Installing GCC: Configuration 19

aix AIX thread support.

dce DCE thread support.

gnat Ada tasking support. For non-Ada programs, this setting is equiv-
alent to ‘single’. When used in conjunction with the Ada run
time, it causes GCC to use the same thread primitives as Ada uses.
This option is necessary when using both Ada and the back end
exception handling, which is the default for most Ada targets.

mach Generic MACH thread support, known to work on NeXTSTEP.
(Please note that the file needed to support this configuration,
‘gthr-mach.h’, is missing and thus this setting will cause a known
bootstrap failure.)

no This is an alias for ‘single’.

posix Generic POSIX/Unix98 thread support.

posix95 Generic POSIX/Unix95 thread support.

rtems RTEMS thread support.

single Disable thread support, should work for all platforms.

solaris Sun Solaris 2/Unix International thread support. Only use this
if you really need to use this legacy API instead of the default,
‘posix’.

vxworks VxWorks thread support.

win32 Microsoft Win32 API thread support.

nks Novell Kernel Services thread support.

--enable-tls
Specify that the target supports TLS (Thread Local Storage). Usually con-
figure can correctly determine if TLS is supported. In cases where it guesses
incorrectly, TLS can be explicitly enabled or disabled with ‘--enable-tls’ or
‘--disable-tls’. This can happen if the assembler supports TLS but the C
library does not, or if the assumptions made by the configure test are incorrect.

--disable-tls
Specify that the target does not support TLS. This is an alias for
‘--enable-tls=no’.

--with-cpu=cpu
--with-cpu-32=cpu
--with-cpu-64=cpu

Specify which cpu variant the compiler should generate code for by default.
cpu will be used as the default value of the ‘-mcpu=’ switch. This option is
only supported on some targets, including ARM, i386, M68k, PowerPC, and
SPARC. The ‘--with-cpu-32’ and ‘--with-cpu-64’ options specify separate
default CPUs for 32-bit and 64-bit modes; these options are only supported for
i386, x86-64 and PowerPC.

20 Installing GCC

--with-schedule=cpu
--with-arch=cpu
--with-arch-32=cpu
--with-arch-64=cpu
--with-tune=cpu
--with-tune-32=cpu
--with-tune-64=cpu
--with-abi=abi
--with-fpu=type
--with-float=type

These configure options provide default values for the ‘-mschedule=’,
‘-march=’, ‘-mtune=’, ‘-mabi=’, and ‘-mfpu=’ options and for ‘-mhard-float’
or ‘-msoft-float’. As with ‘--with-cpu’, which switches will be accepted
and acceptable values of the arguments depend on the target.

--with-mode=mode
Specify if the compiler should default to ‘-marm’ or ‘-mthumb’. This option is
only supported on ARM targets.

--with-fpmath=isa
This options sets ‘-mfpmath=sse’ by default and specifies the default ISA for
floating-point arithmetics. You can select either ‘sse’ which enables ‘-msse2’
or ‘avx’ which enables ‘-mavx’ by default. This option is only supported on
i386 and x86-64 targets.

--with-divide=type
Specify how the compiler should generate code for checking for division by zero.
This option is only supported on the MIPS target. The possibilities for type
are:

traps Division by zero checks use conditional traps (this is the default on
systems that support conditional traps).

breaks Division by zero checks use the break instruction.

--with-llsc
On MIPS targets, make ‘-mllsc’ the default when no ‘-mno-llsc’ option is
passed. This is the default for Linux-based targets, as the kernel will emulate
them if the ISA does not provide them.

--without-llsc
On MIPS targets, make ‘-mno-llsc’ the default when no ‘-mllsc’ option is
passed.

--with-synci
On MIPS targets, make ‘-msynci’ the default when no ‘-mno-synci’ option is
passed.

--without-synci
On MIPS targets, make ‘-mno-synci’ the default when no ‘-msynci’ option is
passed. This is the default.

Chapter 4: Installing GCC: Configuration 21

--with-mips-plt
On MIPS targets, make use of copy relocations and PLTs. These features are
extensions to the traditional SVR4-based MIPS ABIs and require support from
GNU binutils and the runtime C library.

--enable-__cxa_atexit
Define if you want to use cxa atexit, rather than atexit, to register C++ de-
structors for local statics and global objects. This is essential for fully standards-
compliant handling of destructors, but requires cxa atexit in libc. This option
is currently only available on systems with GNU libc. When enabled, this will
cause ‘-fuse-cxa-atexit’ to be passed by default.

--enable-indirect-function
Define if you want to enable the ifunc attribute. This option is currently only
available on systems with GNU libc on certain targets.

--enable-target-optspace
Specify that target libraries should be optimized for code space instead of code
speed. This is the default for the m32r platform.

--with-cpp-install-dir=dirname
Specify that the user visible cpp program should be installed in
‘prefix/dirname/cpp’, in addition to bindir.

--enable-comdat
Enable COMDAT group support. This is primarily used to override the auto-
matically detected value.

--enable-initfini-array
Force the use of sections .init_array and .fini_array (instead of .init and
.fini) for constructors and destructors. Option ‘--disable-initfini-array’
has the opposite effect. If neither option is specified, the configure script will
try to guess whether the .init_array and .fini_array sections are supported
and, if they are, use them.

--enable-build-with-cxx
Build GCC using a C++ compiler rather than a C compiler. This is an experi-
mental option which may become the default in a later release.

--enable-maintainer-mode
The build rules that regenerate the Autoconf and Automake output files as well
as the GCC master message catalog ‘gcc.pot’ are normally disabled. This is
because it can only be rebuilt if the complete source tree is present. If you
have changed the sources and want to rebuild the catalog, configuring with
‘--enable-maintainer-mode’ will enable this. Note that you need a recent
version of the gettext tools to do so.

--disable-bootstrap
For a native build, the default configuration is to perform a 3-stage boot-
strap of the compiler when ‘make’ is invoked, testing that GCC can compile
itself correctly. If you want to disable this process, you can configure with
‘--disable-bootstrap’.

22 Installing GCC

--enable-bootstrap
In special cases, you may want to perform a 3-stage build even if the target and
host triplets are different. This is possible when the host can run code compiled
for the target (e.g. host is i686-linux, target is i486-linux). Starting from GCC
4.2, to do this you have to configure explicitly with ‘--enable-bootstrap’.

--enable-generated-files-in-srcdir
Neither the .c and .h files that are generated from Bison and flex nor the info
manuals and man pages that are built from the .texi files are present in the SVN
development tree. When building GCC from that development tree, or from
one of our snapshots, those generated files are placed in your build directory,
which allows for the source to be in a readonly directory.
If you configure with ‘--enable-generated-files-in-srcdir’ then those gen-
erated files will go into the source directory. This is mainly intended for generat-
ing release or prerelease tarballs of the GCC sources, since it is not a requirement
that the users of source releases to have flex, Bison, or makeinfo.

--enable-version-specific-runtime-libs
Specify that runtime libraries should be installed in the compiler specific subdi-
rectory (‘libdir/gcc’) rather than the usual places. In addition, ‘libstdc++’’s
include files will be installed into ‘libdir ’ unless you overruled it by using
‘--with-gxx-include-dir=dirname ’. Using this option is particularly use-
ful if you intend to use several versions of GCC in parallel. This is cur-
rently supported by ‘libgfortran’, ‘libjava’, ‘libmudflap’, ‘libstdc++’, and
‘libobjc’.

--enable-languages=lang1,lang2,...
Specify that only a particular subset of compilers and their runtime libraries
should be built. For a list of valid values for langN you can issue the following
command in the ‘gcc’ directory of your GCC source tree:

grep language= */config-lang.in

Currently, you can use any of the following: all, ada, c, c++, fortran, go,
java, objc, obj-c++. Building the Ada compiler has special requirements,
see below. If you do not pass this flag, or specify the option all, then all
default languages available in the ‘gcc’ sub-tree will be configured. Ada, Go
and Objective-C++ are not default languages; the rest are.

--enable-stage1-languages=lang1,lang2,...
Specify that a particular subset of compilers and their runtime libraries should
be built with the system C compiler during stage 1 of the bootstrap process,
rather than only in later stages with the bootstrapped C compiler. The list
of valid values is the same as for ‘--enable-languages’, and the option all
will select all of the languages enabled by ‘--enable-languages’. This option
is primarily useful for GCC development; for instance, when a development
version of the compiler cannot bootstrap due to compiler bugs, or when one is
debugging front ends other than the C front end. When this option is used, one
can then build the target libraries for the specified languages with the stage-1
compiler by using make stage1-bubble all-target, or run the testsuite on the

Chapter 4: Installing GCC: Configuration 23

stage-1 compiler for the specified languages using make stage1-start check-
gcc.

--disable-libada
Specify that the run-time libraries and tools used by GNAT should not be
built. This can be useful for debugging, or for compatibility with previous
Ada build procedures, when it was required to explicitly do a ‘make -C gcc
gnatlib_and_tools’.

--disable-libssp
Specify that the run-time libraries for stack smashing protection should not be
built.

--disable-libquadmath
Specify that the GCC quad-precision math library should not be built. On
some systems, the library is required to be linkable when building the Fortran
front end, unless ‘--disable-libquadmath-support’ is used.

--disable-libquadmath-support
Specify that the Fortran front end and libgfortran do not add support for
libquadmath on systems supporting it.

--disable-libgomp
Specify that the run-time libraries used by GOMP should not be built.

--with-dwarf2
Specify that the compiler should use DWARF 2 debugging information as the
default.

--enable-targets=all
--enable-targets=target_list

Some GCC targets, e.g. powerpc64-linux, build bi-arch compilers. These are
compilers that are able to generate either 64-bit or 32-bit code. Typically,
the corresponding 32-bit target, e.g. powerpc-linux for powerpc64-linux, only
generates 32-bit code. This option enables the 32-bit target to be a bi-arch
compiler, which is useful when you want a bi-arch compiler that defaults to
32-bit, and you are building a bi-arch or multi-arch binutils in a combined tree.
On mips-linux, this will build a tri-arch compiler (ABI o32/n32/64), defaulted
to o32. Currently, this option only affects sparc-linux, powerpc-linux, x86-linux
and mips-linux.

--enable-secureplt
This option enables ‘-msecure-plt’ by default for powerpc-linux. See Section
“RS/6000 and PowerPC Options” in Using the GNU Compiler Collection
(GCC),

--enable-cld
This option enables ‘-mcld’ by default for 32-bit x86 targets. See Section “i386
and x86-64 Options” in Using the GNU Compiler Collection (GCC),

24 Installing GCC

--enable-win32-registry
--enable-win32-registry=key
--disable-win32-registry

The ‘--enable-win32-registry’ option enables Microsoft Windows-hosted
GCC to look up installations paths in the registry using the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\key

key defaults to GCC version number, and can be overridden by the
‘--enable-win32-registry=key ’ option. Vendors and distributors who
use custom installers are encouraged to provide a different key, perhaps one
comprised of vendor name and GCC version number, to avoid conflict with
existing installations. This feature is enabled by default, and can be disabled
by ‘--disable-win32-registry’ option. This option has no effect on the
other hosts.

--nfp Specify that the machine does not have a floating point unit. This option only
applies to ‘m68k-sun-sunosn ’. On any other system, ‘--nfp’ has no effect.

--enable-werror
--disable-werror
--enable-werror=yes
--enable-werror=no

When you specify this option, it controls whether certain files in the compiler
are built with ‘-Werror’ in bootstrap stage2 and later. If you don’t specify it,
‘-Werror’ is turned on for the main development trunk. However it defaults to
off for release branches and final releases. The specific files which get ‘-Werror’
are controlled by the Makefiles.

--enable-checking
--enable-checking=list

When you specify this option, the compiler is built to perform internal consis-
tency checks of the requested complexity. This does not change the generated
code, but adds error checking within the compiler. This will slow down the com-
piler and may only work properly if you are building the compiler with GCC.
This is ‘yes’ by default when building from SVN or snapshots, but ‘release’
for releases. The default for building the stage1 compiler is ‘yes’. More control
over the checks may be had by specifying list. The categories of checks available
are ‘yes’ (most common checks ‘assert,misc,tree,gc,rtlflag,runtime’),
‘no’ (no checks at all), ‘all’ (all but ‘valgrind’), ‘release’ (cheapest checks
‘assert,runtime’) or ‘none’ (same as ‘no’). Individual checks can be enabled
with these flags ‘assert’, ‘df’, ‘fold’, ‘gc’, ‘gcac’ ‘misc’, ‘rtl’, ‘rtlflag’,
‘runtime’, ‘tree’, and ‘valgrind’.

The ‘valgrind’ check requires the external valgrind simulator, available
from http://valgrind.org/. The ‘df’, ‘rtl’, ‘gcac’ and ‘valgrind’ checks
are very expensive. To disable all checking, ‘--disable-checking’ or
‘--enable-checking=none’ must be explicitly requested. Disabling assertions
will make the compiler and runtime slightly faster but increase the risk of
undetected internal errors causing wrong code to be generated.

http://valgrind.org/

Chapter 4: Installing GCC: Configuration 25

--disable-stage1-checking
--enable-stage1-checking
--enable-stage1-checking=list

If no ‘--enable-checking’ option is specified the stage1 compiler will be built
with ‘yes’ checking enabled, otherwise the stage1 checking flags are the same
as specified by ‘--enable-checking’. To build the stage1 compiler with dif-
ferent checking options use ‘--enable-stage1-checking’. The list of checking
options is the same as for ‘--enable-checking’. If your system is too slow or
too small to bootstrap a released compiler with checking for stage1 enabled,
you can use ‘--disable-stage1-checking’ to disable checking for the stage1
compiler.

--enable-coverage
--enable-coverage=level

With this option, the compiler is built to collect self coverage information, every
time it is run. This is for internal development purposes, and only works when
the compiler is being built with gcc. The level argument controls whether the
compiler is built optimized or not, values are ‘opt’ and ‘noopt’. For coverage
analysis you want to disable optimization, for performance analysis you want
to enable optimization. When coverage is enabled, the default level is without
optimization.

--enable-gather-detailed-mem-stats
When this option is specified more detailed information on memory allocation
is gathered. This information is printed when using ‘-fmem-report’.

--with-gc
--with-gc=choice

With this option you can specify the garbage collector implementation used
during the compilation process. choice can be one of ‘page’ and ‘zone’, where
‘page’ is the default.

--enable-nls
--disable-nls

The ‘--enable-nls’ option enables Native Language Support (NLS), which
lets GCC output diagnostics in languages other than American English. Native
Language Support is enabled by default if not doing a canadian cross build.
The ‘--disable-nls’ option disables NLS.

--with-included-gettext
If NLS is enabled, the ‘--with-included-gettext’ option causes the build
procedure to prefer its copy of GNU gettext.

--with-catgets
If NLS is enabled, and if the host lacks gettext but has the inferior catgets
interface, the GCC build procedure normally ignores catgets and instead uses
GCC’s copy of the GNU gettext library. The ‘--with-catgets’ option causes
the build procedure to use the host’s catgets in this situation.

26 Installing GCC

--with-libiconv-prefix=dir
Search for libiconv header files in ‘dir/include’ and libiconv library files in
‘dir/lib’.

--enable-obsolete
Enable configuration for an obsoleted system. If you attempt to configure GCC
for a system (build, host, or target) which has been obsoleted, and you do not
specify this flag, configure will halt with an error message.
All support for systems which have been obsoleted in one release of GCC is
removed entirely in the next major release, unless someone steps forward to
maintain the port.

--enable-decimal-float
--enable-decimal-float=yes
--enable-decimal-float=no
--enable-decimal-float=bid
--enable-decimal-float=dpd
--disable-decimal-float

Enable (or disable) support for the C decimal floating point extension that is
in the IEEE 754-2008 standard. This is enabled by default only on PowerPC,
i386, and x86 64 GNU/Linux systems. Other systems may also support it,
but require the user to specifically enable it. You can optionally control which
decimal floating point format is used (either ‘bid’ or ‘dpd’). The ‘bid’ (binary
integer decimal) format is default on i386 and x86 64 systems, and the ‘dpd’
(densely packed decimal) format is default on PowerPC systems.

--enable-fixed-point
--disable-fixed-point

Enable (or disable) support for C fixed-point arithmetic. This option is enabled
by default for some targets (such as MIPS) which have hardware-support for
fixed-point operations. On other targets, you may enable this option manually.

--with-long-double-128
Specify if long double type should be 128-bit by default on selected
GNU/Linux architectures. If using --without-long-double-128, long
double will be by default 64-bit, the same as double type. When neither of
these configure options are used, the default will be 128-bit long double when
built against GNU C Library 2.4 and later, 64-bit long double otherwise.

--with-gmp=pathname
--with-gmp-include=pathname
--with-gmp-lib=pathname
--with-mpfr=pathname
--with-mpfr-include=pathname
--with-mpfr-lib=pathname
--with-mpc=pathname
--with-mpc-include=pathname
--with-mpc-lib=pathname

If you do not have GMP (the GNU Multiple Precision library), the
MPFR library and/or the MPC library installed in a standard lo-

Chapter 4: Installing GCC: Configuration 27

cation and you want to build GCC, you can explicitly specify the
directory where they are installed (‘--with-gmp=gmpinstalldir ’,
‘--with-mpfr=mpfrinstalldir ’, ‘--with-mpc=mpcinstalldir ’). The
‘--with-gmp=gmpinstalldir ’ option is shorthand for ‘--with-gmp-lib=
gmpinstalldir/lib’ and ‘--with-gmp-include=gmpinstalldir/include’.
Likewise the ‘--with-mpfr=mpfrinstalldir ’ option is shorthand for
‘--with-mpfr-lib=mpfrinstalldir/lib’ and ‘--with-mpfr-include=
mpfrinstalldir/include’, also the ‘--with-mpc=mpcinstalldir ’
option is shorthand for ‘--with-mpc-lib=mpcinstalldir/lib’ and
‘--with-mpc-include=mpcinstalldir/include’. If these shorthand
assumptions are not correct, you can use the explicit include and lib options
directly. You might also need to ensure the shared libraries can be found by
the dynamic linker when building and using GCC, for example by setting the
runtime shared library path variable (LD_LIBRARY_PATH on GNU/Linux and
Solaris systems).

These flags are applicable to the host platform only. When building a cross
compiler, they will not be used to configure target libraries.

--with-ppl=pathname
--with-ppl-include=pathname
--with-ppl-lib=pathname
--with-cloog=pathname
--with-cloog-include=pathname
--with-cloog-lib=pathname

If you do not have PPL (the Parma Polyhedra Library) and the
CLooG libraries installed in a standard location and you want to build
GCC, you can explicitly specify the directory where they are installed
(‘--with-ppl=pplinstalldir ’, ‘--with-cloog=clooginstalldir ’). The
‘--with-ppl=pplinstalldir ’ option is shorthand for ‘--with-ppl-lib=
pplinstalldir/lib’ and ‘--with-ppl-include=pplinstalldir/include’.
Likewise the ‘--with-cloog=clooginstalldir ’ option is shorthand for
‘--with-cloog-lib=clooginstalldir/lib’ and ‘--with-cloog-include=
clooginstalldir/include’. If these shorthand assumptions are not correct,
you can use the explicit include and lib options directly.

These flags are applicable to the host platform only. When building a cross
compiler, they will not be used to configure target libraries.

--with-host-libstdcxx=linker-args
If you are linking with a static copy of PPL, you can use this option
to specify how the linker should find the standard C++ library used
internally by PPL. Typical values of linker-args might be ‘-lstdc++’
or ‘-Wl,-Bstatic,-lstdc++,-Bdynamic -lm’. If you are linking with a
shared copy of PPL, you probably do not need this option; shared library
dependencies will cause the linker to search for the standard C++ library
automatically.

28 Installing GCC

--with-stage1-ldflags=flags
This option may be used to set linker flags to be used when linking stage
1 of GCC. These are also used when linking GCC if configured with
‘--disable-bootstrap’. By default no special flags are used.

--with-stage1-libs=libs
This option may be used to set libraries to be used when linking
stage 1 of GCC. These are also used when linking GCC if config-
ured with ‘--disable-bootstrap’. The default is the argument to
‘--with-host-libstdcxx’, if specified.

--with-boot-ldflags=flags
This option may be used to set linker flags to be used when linking
stage 2 and later when bootstrapping GCC. If neither –with-boot-libs nor
–with-host-libstdcxx is set to a value, then the default is ‘-static-libstdc++
-static-libgcc’.

--with-boot-libs=libs
This option may be used to set libraries to be used when linking stage
2 and later when bootstrapping GCC. The default is the argument to
‘--with-host-libstdcxx’, if specified.

--with-debug-prefix-map=map
Convert source directory names using ‘-fdebug-prefix-map’ when building
runtime libraries. ‘map ’ is a space-separated list of maps of the form ‘old=new ’.

--enable-linker-build-id
Tells GCC to pass ‘--build-id’ option to the linker for all final links (links
performed without the ‘-r’ or ‘--relocatable’ option), if the linker supports it.
If you specify ‘--enable-linker-build-id’, but your linker does not support
‘--build-id’ option, a warning is issued and the ‘--enable-linker-build-id’
option is ignored. The default is off.

--enable-gnu-unique-object
--disable-gnu-unique-object

Tells GCC to use the gnu unique object relocation for C++ template static
data members and inline function local statics. Enabled by default for a native
toolchain with an assembler that accepts it and GLIBC 2.11 or above, otherwise
disabled.

--enable-lto
--disable-lto

Enable support for link-time optimization (LTO). This is enabled by default,
and may be disabled using ‘--disable-lto’.

--with-plugin-ld=pathname
Enable an alternate linker to be used at link-time optimization (LTO) link
time when ‘-fuse-linker-plugin’ is enabled. This linker should have plugin
support such as gold starting with version 2.20 or GNU ld starting with version
2.21. See ‘-fuse-linker-plugin’ for details.

Chapter 4: Installing GCC: Configuration 29

Cross-Compiler-Specific Options

The following options only apply to building cross compilers.

--with-sysroot
--with-sysroot=dir

Tells GCC to consider dir as the root of a tree that contains (a subset of)
the root filesystem of the target operating system. Target system headers, li-
braries and run-time object files will be searched in there. More specifically,
this acts as if ‘--sysroot=dir ’ was added to the default options of the built
compiler. The specified directory is not copied into the install tree, unlike
the options ‘--with-headers’ and ‘--with-libs’ that this option obsoletes.
The default value, in case ‘--with-sysroot’ is not given an argument, is
‘${gcc_tooldir}/sys-root’. If the specified directory is a subdirectory of
‘${exec_prefix}’, then it will be found relative to the GCC binaries if the
installation tree is moved.

This option affects the system root for the compiler used to build target libraries
(which runs on the build system) and the compiler newly installed with make
install; it does not affect the compiler which is used to build GCC itself.

--with-build-sysroot
--with-build-sysroot=dir

Tells GCC to consider dir as the system root (see ‘--with-sysroot’)
while building target libraries, instead of the directory specified with
‘--with-sysroot’. This option is only useful when you are already using
‘--with-sysroot’. You can use ‘--with-build-sysroot’ when you are
configuring with ‘--prefix’ set to a directory that is different from the one in
which you are installing GCC and your target libraries.

This option affects the system root for the compiler used to build target libraries
(which runs on the build system); it does not affect the compiler which is used
to build GCC itself.

--with-headers
--with-headers=dir

Deprecated in favor of ‘--with-sysroot’. Specifies that target headers are
available when building a cross compiler. The dir argument specifies a di-
rectory which has the target include files. These include files will be copied
into the ‘gcc’ install directory. This option with the dir argument is required
when building a cross compiler, if ‘prefix/target/sys-include’ doesn’t pre-
exist. If ‘prefix/target/sys-include’ does pre-exist, the dir argument may
be omitted. fixincludes will be run on these files to make them compatible
with GCC.

--without-headers
Tells GCC not use any target headers from a libc when building a cross compiler.
When crossing to GNU/Linux, you need the headers so GCC can build the
exception handling for libgcc.

30 Installing GCC

--with-libs
--with-libs="dir1 dir2 ... dirN"

Deprecated in favor of ‘--with-sysroot’. Specifies a list of directories which
contain the target runtime libraries. These libraries will be copied into the ‘gcc’
install directory. If the directory list is omitted, this option has no effect.

--with-newlib
Specifies that ‘newlib’ is being used as the target C library. This causes _
_eprintf to be omitted from ‘libgcc.a’ on the assumption that it will be
provided by ‘newlib’.

--with-build-time-tools=dir
Specifies where to find the set of target tools (assembler, linker, etc.) that will
be used while building GCC itself. This option can be useful if the directory
layouts are different between the system you are building GCC on, and the
system where you will deploy it.
For example, on an ‘ia64-hp-hpux’ system, you may have the GNU assembler
and linker in ‘/usr/bin’, and the native tools in a different path, and build a
toolchain that expects to find the native tools in ‘/usr/bin’.
When you use this option, you should ensure that dir includes ar, as, ld, nm,
ranlib and strip if necessary, and possibly objdump. Otherwise, GCC may
use an inconsistent set of tools.

Java-Specific Options

The following option applies to the build of the Java front end.

--disable-libgcj
Specify that the run-time libraries used by GCJ should not be built. This
is useful in case you intend to use GCJ with some other run-time, or you’re
going to install it separately, or it just happens not to build on your particular
machine. In general, if the Java front end is enabled, the GCJ libraries will be
enabled too, unless they’re known to not work on the target platform. If GCJ
is enabled but ‘libgcj’ isn’t built, you may need to port it; in this case, before
modifying the top-level ‘configure.in’ so that ‘libgcj’ is enabled by default
on this platform, you may use ‘--enable-libgcj’ to override the default.

The following options apply to building ‘libgcj’.

General Options

--enable-java-maintainer-mode
By default the ‘libjava’ build will not attempt to compile the ‘.java’ source
files to ‘.class’. Instead, it will use the ‘.class’ files from the source tree. If
you use this option you must have executables named ecj1 and gjavah in your
path for use by the build. You must use this option if you intend to modify any
‘.java’ files in ‘libjava’.

--with-java-home=dirname
This ‘libjava’ option overrides the default value of the ‘java.home’
system property. It is also used to set ‘sun.boot.class.path’ to

Chapter 4: Installing GCC: Configuration 31

‘dirname/lib/rt.jar’. By default ‘java.home’ is set to ‘prefix ’ and
‘sun.boot.class.path’ to ‘datadir/java/libgcj-version.jar’.

--with-ecj-jar=filename
This option can be used to specify the location of an external jar file containing
the Eclipse Java compiler. A specially modified version of this compiler is used
by gcj to parse ‘.java’ source files. If this option is given, the ‘libjava’ build
will create and install an ‘ecj1’ executable which uses this jar file at runtime.
If this option is not given, but an ‘ecj.jar’ file is found in the topmost source
tree at configure time, then the ‘libgcj’ build will create and install ‘ecj1’,
and will also install the discovered ‘ecj.jar’ into a suitable place in the install
tree.
If ‘ecj1’ is not installed, then the user will have to supply one on his path in
order for gcj to properly parse ‘.java’ source files. A suitable jar is available
from ftp://sourceware.org/pub/java/.

--disable-getenv-properties
Don’t set system properties from GCJ_PROPERTIES.

--enable-hash-synchronization
Use a global hash table for monitor locks. Ordinarily, ‘libgcj’’s ‘configure’
script automatically makes the correct choice for this option for your platform.
Only use this if you know you need the library to be configured differently.

--enable-interpreter
Enable the Java interpreter. The interpreter is automatically enabled by default
on all platforms that support it. This option is really only useful if you want
to disable the interpreter (using ‘--disable-interpreter’).

--disable-java-net
Disable java.net. This disables the native part of java.net only, using non-
functional stubs for native method implementations.

--disable-jvmpi
Disable JVMPI support.

--disable-libgcj-bc
Disable BC ABI compilation of certain parts of libgcj. By default,
some portions of libgcj are compiled with ‘-findirect-dispatch’ and
‘-fno-indirect-classes’, allowing them to be overridden at run-time.
If ‘--disable-libgcj-bc’ is specified, libgcj is built without these options.
This allows the compile-time linker to resolve dependencies when statically
linking to libgcj. However it makes it impossible to override the affected portions
of libgcj at run-time.

--enable-reduced-reflection
Build most of libgcj with ‘-freduced-reflection’. This reduces the size of
libgcj at the expense of not being able to do accurate reflection on the classes
it contains. This option is safe if you know that code using libgcj will never use
reflection on the standard runtime classes in libgcj (including using serialization,
RMI or CORBA).

ftp://sourceware.org/pub/java/

32 Installing GCC

--with-ecos
Enable runtime eCos target support.

--without-libffi
Don’t use ‘libffi’. This will disable the interpreter and JNI support as well,
as these require ‘libffi’ to work.

--enable-libgcj-debug
Enable runtime debugging code.

--enable-libgcj-multifile
If specified, causes all ‘.java’ source files to be compiled into ‘.class’ files in
one invocation of ‘gcj’. This can speed up build time, but is more resource-
intensive. If this option is unspecified or disabled, ‘gcj’ is invoked once for each
‘.java’ file to compile into a ‘.class’ file.

--with-libiconv-prefix=DIR
Search for libiconv in ‘DIR/include’ and ‘DIR/lib’.

--enable-sjlj-exceptions
Force use of the setjmp/longjmp-based scheme for exceptions. ‘configure’
ordinarily picks the correct value based on the platform. Only use this option
if you are sure you need a different setting.

--with-system-zlib
Use installed ‘zlib’ rather than that included with GCC.

--with-win32-nlsapi=ansi, unicows or unicode
Indicates how MinGW ‘libgcj’ translates between UNICODE characters and
the Win32 API.

--enable-java-home
If enabled, this creates a JPackage compatible SDK environment during install.
Note that if –enable-java-home is used, –with-arch-directory=ARCH must also
be specified.

--with-arch-directory=ARCH
Specifies the name to use for the ‘jre/lib/ARCH’ directory in the SDK en-
vironment created when –enable-java-home is passed. Typical names for this
directory include i386, amd64, ia64, etc.

--with-os-directory=DIR
Specifies the OS directory for the SDK include directory. This is set to auto
detect, and is typically ’linux’.

--with-origin-name=NAME
Specifies the JPackage origin name. This defaults to the ’gcj’ in java-1.5.0-gcj.

--with-arch-suffix=SUFFIX
Specifies the suffix for the sdk directory. Defaults to the empty string. Examples
include ’.x86 64’ in ’java-1.5.0-gcj-1.5.0.0.x86 64’.

--with-jvm-root-dir=DIR
Specifies where to install the SDK. Default is $(prefix)/lib/jvm.

Chapter 4: Installing GCC: Configuration 33

--with-jvm-jar-dir=DIR
Specifies where to install jars. Default is $(prefix)/lib/jvm-exports.

--with-python-dir=DIR
Specifies where to install the Python modules used for aot-compile. DIR should
not include the prefix used in installation. For example, if the Python mod-
ules are to be installed in /usr/lib/python2.5/site-packages, then –with-python-
dir=/lib/python2.5/site-packages should be passed. If this is not specified, then
the Python modules are installed in $(prefix)/share/python.

--enable-aot-compile-rpm
Adds aot-compile-rpm to the list of installed scripts.

--enable-browser-plugin
Build the gcjwebplugin web browser plugin.

ansi Use the single-byte char and the Win32 A functions natively, trans-
lating to and from UNICODE when using these functions. If un-
specified, this is the default.

unicows Use the WCHAR and Win32 W functions natively. Adds -lunicows
to ‘libgcj.spec’ to link with ‘libunicows’. ‘unicows.dll’
needs to be deployed on Microsoft Windows 9X machines
running built executables. ‘libunicows.a’, an open-source
import library around Microsoft’s unicows.dll, is obtained from
http://libunicows.sourceforge.net/, which also gives details
on getting ‘unicows.dll’ from Microsoft.

unicode Use the WCHAR and Win32 W functions natively. Does not add -
lunicows to ‘libgcj.spec’. The built executables will only run
on Microsoft Windows NT and above.

AWT-Specific Options

--with-x Use the X Window System.

--enable-java-awt=PEER(S)
Specifies the AWT peer library or libraries to build alongside ‘libgcj’. If this
option is unspecified or disabled, AWT will be non-functional. Current valid
values are ‘gtk’ and ‘xlib’. Multiple libraries should be separated by a comma
(i.e. ‘--enable-java-awt=gtk,xlib’).

--enable-gtk-cairo
Build the cairo Graphics2D implementation on GTK.

--enable-java-gc=TYPE
Choose garbage collector. Defaults to ‘boehm’ if unspecified.

--disable-gtktest
Do not try to compile and run a test GTK+ program.

--disable-glibtest
Do not try to compile and run a test GLIB program.

http://libunicows.sourceforge.net/

34 Installing GCC

--with-libart-prefix=PFX
Prefix where libart is installed (optional).

--with-libart-exec-prefix=PFX
Exec prefix where libart is installed (optional).

--disable-libarttest
Do not try to compile and run a test libart program.

Overriding configure test results

Sometimes, it might be necessary to override the result of some configure test, for example
in order to ease porting to a new system or work around a bug in a test. The toplevel
configure script provides three variables for this:

build_configargs
The contents of this variable is passed to all build configure scripts.

host_configargs
The contents of this variable is passed to all host configure scripts.

target_configargs
The contents of this variable is passed to all target configure scripts.

In order to avoid shell and make quoting issues for complex overrides, you can pass a
setting for CONFIG_SITE and set variables in the site file.

Chapter 5: Building 35

5 Building

Now that GCC is configured, you are ready to build the compiler and runtime libraries.
Some commands executed when making the compiler may fail (return a nonzero status)

and be ignored by make. These failures, which are often due to files that were not found,
are expected, and can safely be ignored.

It is normal to have compiler warnings when compiling certain files. Unless you
are a GCC developer, you can generally ignore these warnings unless they cause
compilation to fail. Developers should attempt to fix any warnings encountered, however
they can temporarily continue past warnings-as-errors by specifying the configure flag
‘--disable-werror’.

On certain old systems, defining certain environment variables such as CC can interfere
with the functioning of make.

If you encounter seemingly strange errors when trying to build the compiler in a directory
other than the source directory, it could be because you have previously configured the
compiler in the source directory. Make sure you have done all the necessary preparations.

If you build GCC on a BSD system using a directory stored in an old System V file
system, problems may occur in running fixincludes if the System V file system doesn’t
support symbolic links. These problems result in a failure to fix the declaration of size_t
in ‘sys/types.h’. If you find that size_t is a signed type and that type mismatches occur,
this could be the cause.

The solution is not to use such a directory for building GCC.
Similarly, when building from SVN or snapshots, or if you modify ‘*.l’ files, you need the

Flex lexical analyzer generator installed. If you do not modify ‘*.l’ files, releases contain
the Flex-generated files and you do not need Flex installed to build them. There is still one
Flex-based lexical analyzer (part of the build machinery, not of GCC itself) that is used
even if you only build the C front end.

When building from SVN or snapshots, or if you modify Texinfo documentation, you need
version 4.7 or later of Texinfo installed if you want Info documentation to be regenerated.
Releases contain Info documentation pre-built for the unmodified documentation in the
release.

5.1 Building a native compiler

For a native build, the default configuration is to perform a 3-stage bootstrap of the com-
piler when ‘make’ is invoked. This will build the entire GCC system and ensure that it
compiles itself correctly. It can be disabled with the ‘--disable-bootstrap’ parameter
to ‘configure’, but bootstrapping is suggested because the compiler will be tested more
completely and could also have better performance.

The bootstrapping process will complete the following steps:
• Build tools necessary to build the compiler.
• Perform a 3-stage bootstrap of the compiler. This includes building three times the

target tools for use by the compiler such as binutils (bfd, binutils, gas, gprof, ld, and
opcodes) if they have been individually linked or moved into the top level GCC source
tree before configuring.

36 Installing GCC

• Perform a comparison test of the stage2 and stage3 compilers.
• Build runtime libraries using the stage3 compiler from the previous step.

If you are short on disk space you might consider ‘make bootstrap-lean’ instead. The
sequence of compilation is the same described above, but object files from the stage1 and
stage2 of the 3-stage bootstrap of the compiler are deleted as soon as they are no longer
needed.

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers,
set BOOT_CFLAGS on the command line when doing ‘make’. For example, if you want to save
additional space during the bootstrap and in the final installation as well, you can build
the compiler binaries without debugging information as in the following example. This will
save roughly 40% of disk space both for the bootstrap and the final installation. (Libraries
will still contain debugging information.)

make BOOT_CFLAGS=’-O’ bootstrap

You can place non-default optimization flags into BOOT_CFLAGS; they are less well tested
here than the default of ‘-g -O2’, but should still work. In a few cases, you may find that
you need to specify special flags such as ‘-msoft-float’ here to complete the bootstrap; or,
if the native compiler miscompiles the stage1 compiler, you may need to work around this,
by choosing BOOT_CFLAGS to avoid the parts of the stage1 compiler that were miscompiled,
or by using ‘make bootstrap4’ to increase the number of stages of bootstrap.

BOOT_CFLAGS does not apply to bootstrapped target libraries. Since these are always
compiled with the compiler currently being bootstrapped, you can use CFLAGS_FOR_TARGET
to modify their compilation flags, as for non-bootstrapped target libraries. Again, if the
native compiler miscompiles the stage1 compiler, you may need to work around this by
avoiding non-working parts of the stage1 compiler. Use STAGE1_TFLAGS to this end.

If you used the flag ‘--enable-languages=...’ to restrict the compilers to be built, only
those you’ve actually enabled will be built. This will of course only build those runtime
libraries, for which the particular compiler has been built. Please note, that re-defining
LANGUAGES when calling ‘make’ does not work anymore!

If the comparison of stage2 and stage3 fails, this normally indicates that the stage2
compiler has compiled GCC incorrectly, and is therefore a potentially serious bug which
you should investigate and report. (On a few systems, meaningful comparison of object
files is impossible; they always appear “different”. If you encounter this problem, you will
need to disable comparison in the ‘Makefile’.)

If you do not want to bootstrap your compiler, you can configure with
‘--disable-bootstrap’. In particular cases, you may want to bootstrap your
compiler even if the target system is not the same as the one you are building
on: for example, you could build a powerpc-unknown-linux-gnu toolchain on a
powerpc64-unknown-linux-gnu host. In this case, pass ‘--enable-bootstrap’ to the
configure script.

BUILD_CONFIG can be used to bring in additional customization to the build. It can be
set to a whitespace-separated list of names. For each such NAME, top-level ‘config/NAME.mk’
will be included by the top-level ‘Makefile’, bringing in any settings it contains. The de-
fault BUILD_CONFIG can be set using the configure option ‘--with-build-config=NAME...’.
Some examples of supported build configurations are:

Chapter 5: Building 37

‘bootstrap-O1’
Removes any ‘-O’-started option from BOOT_CFLAGS, and adds ‘-O1’ to it.
‘BUILD_CONFIG=bootstrap-O1’ is equivalent to ‘BOOT_CFLAGS=’-g -O1’’.

‘bootstrap-O3’
Analogous to bootstrap-O1.

‘bootstrap-lto’
Enables Link-Time Optimization for host tools during bootstrapping.
‘BUILD_CONFIG=bootstrap-lto’ is equivalent to adding ‘-flto’ to
‘BOOT_CFLAGS’.

‘bootstrap-debug’
Verifies that the compiler generates the same executable code, whether or not
it is asked to emit debug information. To this end, this option builds stage2
host programs without debug information, and uses ‘contrib/compare-debug’
to compare them with the stripped stage3 object files. If BOOT_CFLAGS is over-
ridden so as to not enable debug information, stage2 will have it, and stage3
won’t. This option is enabled by default when GCC bootstrapping is enabled,
if strip can turn object files compiled with and without debug info into iden-
tical object files. In addition to better test coverage, this option makes default
bootstraps faster and leaner.

‘bootstrap-debug-big’
Rather than comparing stripped object files, as in bootstrap-debug, this op-
tion saves internal compiler dumps during stage2 and stage3 and compares them
as well, which helps catch additional potential problems, but at a great cost in
terms of disk space. It can be specified in addition to ‘bootstrap-debug’.

‘bootstrap-debug-lean’
This option saves disk space compared with bootstrap-debug-big, but at the
expense of some recompilation. Instead of saving the dumps of stage2 and
stage3 until the final compare, it uses ‘-fcompare-debug’ to generate, compare
and remove the dumps during stage3, repeating the compilation that already
took place in stage2, whose dumps were not saved.

‘bootstrap-debug-lib’
This option tests executable code invariance over debug information generation
on target libraries, just like bootstrap-debug-lean tests it on host programs.
It builds stage3 libraries with ‘-fcompare-debug’, and it can be used along
with any of the bootstrap-debug options above.

There aren’t -lean or -big counterparts to this option because most libraries
are only build in stage3, so bootstrap compares would not get significant cov-
erage. Moreover, the few libraries built in stage2 are used in stage3 host pro-
grams, so we wouldn’t want to compile stage2 libraries with different options
for comparison purposes.

‘bootstrap-debug-ckovw’
Arranges for error messages to be issued if the compiler built on any stage is
run without the option ‘-fcompare-debug’. This is useful to verify the full

38 Installing GCC

‘-fcompare-debug’ testing coverage. It must be used along with bootstrap-
debug-lean and bootstrap-debug-lib.

‘bootstrap-time’
Arranges for the run time of each program started by the GCC driver, built in
any stage, to be logged to ‘time.log’, in the top level of the build tree.

5.2 Building a cross compiler

When building a cross compiler, it is not generally possible to do a 3-stage bootstrap of the
compiler. This makes for an interesting problem as parts of GCC can only be built with
GCC.

To build a cross compiler, we recommend first building and installing a native compiler.
You can then use the native GCC compiler to build the cross compiler. The installed native
compiler needs to be GCC version 2.95 or later.

If the cross compiler is to be built with support for the Java programming language and
the ability to compile .java source files is desired, the installed native compiler used to build
the cross compiler needs to be the same GCC version as the cross compiler. In addition the
cross compiler needs to be configured with ‘--with-ecj-jar=...’.

Assuming you have already installed a native copy of GCC and configured your cross
compiler, issue the command make, which performs the following steps:

• Build host tools necessary to build the compiler.
• Build target tools for use by the compiler such as binutils (bfd, binutils, gas, gprof, ld,

and opcodes) if they have been individually linked or moved into the top level GCC
source tree before configuring.

• Build the compiler (single stage only).
• Build runtime libraries using the compiler from the previous step.

Note that if an error occurs in any step the make process will exit.

If you are not building GNU binutils in the same source tree as GCC, you will need a
cross-assembler and cross-linker installed before configuring GCC. Put them in the directory
‘prefix/target/bin’. Here is a table of the tools you should put in this directory:

‘as’ This should be the cross-assembler.

‘ld’ This should be the cross-linker.

‘ar’ This should be the cross-archiver: a program which can manipulate archive files
(linker libraries) in the target machine’s format.

‘ranlib’ This should be a program to construct a symbol table in an archive file.

The installation of GCC will find these programs in that directory, and copy or link
them to the proper place to for the cross-compiler to find them when run later.

The easiest way to provide these files is to build the Binutils package. Configure it with
the same ‘--host’ and ‘--target’ options that you use for configuring GCC, then build
and install them. They install their executables automatically into the proper directory.
Alas, they do not support all the targets that GCC supports.

Chapter 5: Building 39

If you are not building a C library in the same source tree as GCC, you should also
provide the target libraries and headers before configuring GCC, specifying the directories
with ‘--with-sysroot’ or ‘--with-headers’ and ‘--with-libs’. Many targets also require
“start files” such as ‘crt0.o’ and ‘crtn.o’ which are linked into each executable. There
may be several alternatives for ‘crt0.o’, for use with profiling or other compilation options.
Check your target’s definition of STARTFILE_SPEC to find out what start files it uses.

5.3 Building in parallel

GNU Make 3.80 and above, which is necessary to build GCC, support building in parallel.
To activate this, you can use ‘make -j 2’ instead of ‘make’. You can also specify a bigger
number, and in most cases using a value greater than the number of processors in your
machine will result in fewer and shorter I/O latency hits, thus improving overall throughput;
this is especially true for slow drives and network filesystems.

5.4 Building the Ada compiler

In order to build GNAT, the Ada compiler, you need a working GNAT compiler (GCC
version 4.0 or later). This includes GNAT tools such as gnatmake and gnatlink, since the
Ada front end is written in Ada and uses some GNAT-specific extensions.

In order to build a cross compiler, it is suggested to install the new compiler as native
first, and then use it to build the cross compiler.

configure does not test whether the GNAT installation works and has a sufficiently
recent version; if too old a GNAT version is installed, the build will fail unless
‘--enable-languages’ is used to disable building the Ada front end.

ADA_INCLUDE_PATH and ADA_OBJECT_PATH environment variables must not be set when
building the Ada compiler, the Ada tools, or the Ada runtime libraries. You can check that
your build environment is clean by verifying that ‘gnatls -v’ lists only one explicit path in
each section.

5.5 Building with profile feedback

It is possible to use profile feedback to optimize the compiler itself. This should result in
a faster compiler binary. Experiments done on x86 using gcc 3.3 showed approximately 7
percent speedup on compiling C programs. To bootstrap the compiler with profile feedback,
use make profiledbootstrap.

When ‘make profiledbootstrap’ is run, it will first build a stage1 compiler. This
compiler is used to build a stageprofile compiler instrumented to collect execution counts
of instruction and branch probabilities. Then runtime libraries are compiled with profile
collected. Finally a stagefeedback compiler is built using the information collected.

Unlike standard bootstrap, several additional restrictions apply. The compiler used to
build stage1 needs to support a 64-bit integral type. It is recommended to only use GCC
for this. Also parallel make is currently not supported since collisions in profile collecting
may occur.

Chapter 6: Installing GCC: Testing 41

6 Installing GCC: Testing

Before you install GCC, we encourage you to run the testsuites and to compare your results
with results from a similar configuration that have been submitted to the gcc-testresults
mailing list. Some of these archived results are linked from the build status lists at
http://gcc.gnu.org/buildstat.html, although not everyone who reports a successful
build runs the testsuites and submits the results. This step is optional and may require
you to download additional software, but it can give you confidence in your new GCC
installation or point out problems before you install and start using your new GCC.

First, you must have downloaded the testsuites. These are part of the full distribution,
but if you downloaded the “core” compiler plus any front ends, you must download the
testsuites separately.

Second, you must have the testing tools installed. This includes DejaGnu, Tcl, and
Expect; the DejaGnu site has links to these.

If the directories where runtest and expect were installed are not in the PATH, you may
need to set the following environment variables appropriately, as in the following example
(which assumes that DejaGnu has been installed under ‘/usr/local’):

TCL_LIBRARY = /usr/local/share/tcl8.0

DEJAGNULIBS = /usr/local/share/dejagnu

(On systems such as Cygwin, these paths are required to be actual paths, not mounts
or links; presumably this is due to some lack of portability in the DejaGnu code.)

Finally, you can run the testsuite (which may take a long time):
cd objdir; make -k check

This will test various components of GCC, such as compiler front ends and runtime
libraries. While running the testsuite, DejaGnu might emit some harmless messages resem-
bling ‘WARNING: Couldn’t find the global config file.’ or ‘WARNING: Couldn’t find
tool init file’ that can be ignored.

If you are testing a cross-compiler, you may want to run the testsuite on a simulator as
described at http://gcc.gnu.org/simtest-howto.html.

6.1 How can you run the testsuite on selected tests?

In order to run sets of tests selectively, there are targets ‘make check-gcc’ and ‘make
check-g++’ in the ‘gcc’ subdirectory of the object directory. You can also just run ‘make
check’ in a subdirectory of the object directory.

A more selective way to just run all gcc execute tests in the testsuite is to use
make check-gcc RUNTESTFLAGS="execute.exp other-options"

Likewise, in order to run only the g++ “old-deja” tests in the testsuite with filenames
matching ‘9805*’, you would use

make check-g++ RUNTESTFLAGS="old-deja.exp=9805* other-options"

The ‘*.exp’ files are located in the testsuite directories of the GCC source, the most
important ones being ‘compile.exp’, ‘execute.exp’, ‘dg.exp’ and ‘old-deja.exp’. To get
a list of the possible ‘*.exp’ files, pipe the output of ‘make check’ into a file and look at
the ‘Runningexp’ lines.

http://gcc.gnu.org/ml/gcc-testresults/
http://gcc.gnu.org/ml/gcc-testresults/
http://gcc.gnu.org/buildstat.html
download.html
http://www.gnu.org/software/dejagnu/
http://gcc.gnu.org/simtest-howto.html

42 Installing GCC

6.2 Passing options and running multiple testsuites

You can pass multiple options to the testsuite using the ‘--target_board’ option of De-
jaGNU, either passed as part of ‘RUNTESTFLAGS’, or directly to runtest if you prefer to
work outside the makefiles. For example,

make check-g++ RUNTESTFLAGS="--target_board=unix/-O3/-fmerge-constants"

will run the standard g++ testsuites (“unix” is the target name for a standard native
testsuite situation), passing ‘-O3 -fmerge-constants’ to the compiler on every test, i.e.,
slashes separate options.

You can run the testsuites multiple times using combinations of options with a syntax
similar to the brace expansion of popular shells:

..."--target_board=arm-sim\{-mhard-float,-msoft-float\}\{-O1,-O2,-O3,\}"

(Note the empty option caused by the trailing comma in the final group.) The following
will run each testsuite eight times using the ‘arm-sim’ target, as if you had specified all
possible combinations yourself:

--target_board=arm-sim/-mhard-float/-O1

--target_board=arm-sim/-mhard-float/-O2

--target_board=arm-sim/-mhard-float/-O3

--target_board=arm-sim/-mhard-float

--target_board=arm-sim/-msoft-float/-O1

--target_board=arm-sim/-msoft-float/-O2

--target_board=arm-sim/-msoft-float/-O3

--target_board=arm-sim/-msoft-float

They can be combined as many times as you wish, in arbitrary ways. This list:
..."--target_board=unix/-Wextra\{-O3,-fno-strength\}\{-fomit-frame,\}"

will generate four combinations, all involving ‘-Wextra’.

The disadvantage to this method is that the testsuites are run in serial, which is a
waste on multiprocessor systems. For users with GNU Make and a shell which performs
brace expansion, you can run the testsuites in parallel by having the shell perform the
combinations and make do the parallel runs. Instead of using ‘--target_board’, use a
special makefile target:

make -jN check-testsuite//test-target/option1/option2/...

For example,
make -j3 check-gcc//sh-hms-sim/{-m1,-m2,-m3,-m3e,-m4}/{,-nofpu}

will run three concurrent “make-gcc” testsuites, eventually testing all ten combinations
as described above. Note that this is currently only supported in the ‘gcc’ subdirectory.
(To see how this works, try typing echo before the example given here.)

6.3 Additional testing for Java Class Libraries

The Java runtime tests can be executed via ‘make check’ in the ‘tar-
get/libjava/testsuite’ directory in the build tree.

The Mauve Project provides a suite of tests for the Java Class Libraries. This suite
can be run as part of libgcj testing by placing the Mauve tree within the libjava testsuite
at ‘libjava/testsuite/libjava.mauve/mauve’, or by specifying the location of that tree
when invoking ‘make’, as in ‘make MAUVEDIR=~/mauve check’.

http://sourceware.org/mauve/

Chapter 6: Installing GCC: Testing 43

6.4 How to interpret test results

The result of running the testsuite are various ‘*.sum’ and ‘*.log’ files in the testsuite
subdirectories. The ‘*.log’ files contain a detailed log of the compiler invocations and the
corresponding results, the ‘*.sum’ files summarize the results. These summaries contain
status codes for all tests:
• PASS: the test passed as expected
• XPASS: the test unexpectedly passed
• FAIL: the test unexpectedly failed
• XFAIL: the test failed as expected
• UNSUPPORTED: the test is not supported on this platform
• ERROR: the testsuite detected an error
• WARNING: the testsuite detected a possible problem

It is normal for some tests to report unexpected failures. At the current time the testing
harness does not allow fine grained control over whether or not a test is expected to fail.
This problem should be fixed in future releases.

6.5 Submitting test results

If you want to report the results to the GCC project, use the ‘contrib/test_summary’ shell
script. Start it in the objdir with

srcdir/contrib/test_summary -p your_commentary.txt \

-m gcc-testresults@gcc.gnu.org |sh

This script uses the Mail program to send the results, so make sure it is in your PATH.
The file ‘your_commentary.txt’ is prepended to the testsuite summary and should contain
any special remarks you have on your results or your build environment. Please do not
edit the testsuite result block or the subject line, as these messages may be automatically
processed.

Chapter 7: Installing GCC: Final installation 45

7 Installing GCC: Final installation

Now that GCC has been built (and optionally tested), you can install it with
cd objdir && make install

We strongly recommend to install into a target directory where there is no previous
version of GCC present. Also, the GNAT runtime should not be stripped, as this would
break certain features of the debugger that depend on this debugging information (catching
Ada exceptions for instance).

That step completes the installation of GCC; user level binaries can be found in ‘pre-
fix/bin’ where prefix is the value you specified with the ‘--prefix’ to configure (or
‘/usr/local’ by default). (If you specified ‘--bindir’, that directory will be used instead;
otherwise, if you specified ‘--exec-prefix’, ‘exec-prefix/bin’ will be used.) Headers for
the C++ and Java libraries are installed in ‘prefix/include’; libraries in ‘libdir ’ (nor-
mally ‘prefix/lib’); internal parts of the compiler in ‘libdir/gcc’ and ‘libexecdir/gcc’;
documentation in info format in ‘infodir ’ (normally ‘prefix/info’).

When installing cross-compilers, GCC’s executables are not only installed into ‘bindir ’,
that is, ‘exec-prefix/bin’, but additionally into ‘exec-prefix/target-alias/bin’, if
that directory exists. Typically, such tooldirs hold target-specific binutils, including assem-
bler and linker.

Installation into a temporary staging area or into a chroot jail can be achieved with the
command

make DESTDIR=path-to-rootdir install

where path-to-rootdir is the absolute path of a directory relative to which all installation
paths will be interpreted. Note that the directory specified by DESTDIR need not exist yet;
it will be created if necessary.

There is a subtle point with tooldirs and DESTDIR: If you relocate a cross-compiler instal-
lation with e.g. ‘DESTDIR=rootdir ’, then the directory ‘rootdir/exec-prefix/target-
alias/bin’ will be filled with duplicated GCC executables only if it already exists, it will
not be created otherwise. This is regarded as a feature, not as a bug, because it gives
slightly more control to the packagers using the DESTDIR feature.

You can install stripped programs and libraries with
make install-strip

If you are bootstrapping a released version of GCC then please quickly review the build
status page for your release, available from http://gcc.gnu.org/buildstat.html. If your
system is not listed for the version of GCC that you built, send a note to gcc@gcc.gnu.org
indicating that you successfully built and installed GCC. Include the following information:
• Output from running ‘srcdir/config.guess’. Do not send that file itself, just the

one-line output from running it.
• The output of ‘gcc -v’ for your newly installed gcc. This tells us which version of

GCC you built and the options you passed to configure.
• Whether you enabled all languages or a subset of them. If you used a full distribution

then this information is part of the configure options in the output of ‘gcc -v’, but if
you downloaded the “core” compiler plus additional front ends then it isn’t apparent
which ones you built unless you tell us about it.

http://gcc.gnu.org/buildstat.html
mailto:gcc@gcc.gnu.org

46 Installing GCC

• If the build was for GNU/Linux, also include:
• The distribution name and version (e.g., Red Hat 7.1 or Debian 2.2.3); this infor-

mation should be available from ‘/etc/issue’.
• The version of the Linux kernel, available from ‘uname --version’ or ‘uname -a’.
• The version of glibc you used; for RPM-based systems like Red Hat, Mandrake,

and SuSE type ‘rpm -q glibc’ to get the glibc version, and on systems like Debian
and Progeny use ‘dpkg -l libc6’.

For other systems, you can include similar information if you think it is relevant.
• Any other information that you think would be useful to people building GCC on the

same configuration. The new entry in the build status list will include a link to the
archived copy of your message.

We’d also like to know if the Chapter 9 [Specific], page 49 didn’t include your
host/target information or if that information is incomplete or out of date. Send a note to
gcc@gcc.gnu.org detailing how the information should be changed.

If you find a bug, please report it following the bug reporting guidelines.
If you want to print the GCC manuals, do ‘cd objdir; make dvi’. You will need to have

texi2dvi (version at least 4.7) and TEX installed. This creates a number of ‘.dvi’ files in
subdirectories of ‘objdir ’; these may be converted for printing with programs such as dvips.
Alternately, by using ‘make pdf’ in place of ‘make dvi’, you can create documentation in
the form of ‘.pdf’ files; this requires texi2pdf, which is included with Texinfo version 4.8
and later. You can also buy printed manuals from the Free Software Foundation, though
such manuals may not be for the most recent version of GCC.

If you would like to generate online HTML documentation, do ‘cd objdir; make html’
and HTML will be generated for the gcc manuals in ‘objdir/gcc/HTML’.

mailto:gcc@gcc.gnu.org
../bugs/
http://shop.fsf.org/

Chapter 8: Installing GCC: Binaries 47

8 Installing GCC: Binaries

We are often asked about pre-compiled versions of GCC. While we cannot provide these for
all platforms, below you’ll find links to binaries for various platforms where creating them
by yourself is not easy due to various reasons.

Please note that we did not create these binaries, nor do we support them. If you have
any problems installing them, please contact their makers.
• AIX:

• Bull’s Freeware and Shareware Archive for AIX;
• Hudson Valley Community College Open Source Software for IBM System p;
• AIX 5L and 6 Open Source Packages.

• DOS—DJGPP.
• Renesas H8/300[HS]—GNU Development Tools for the Renesas H8/300[HS] Series.
• HP-UX:

• HP-UX Porting Center;
• Binaries for HP-UX 11.00 at Aachen University of Technology.

• SCO OpenServer/Unixware.
• Solaris 2 (SPARC, Intel):

• Sunfreeware
• Blastwave
• OpenCSW
• TGCware

• SGI IRIX:
• Nekoware
• TGCware

• Microsoft Windows:
• The Cygwin project;
• The MinGW project.

• The Written Word offers binaries for AIX 4.3.3, 5.1 and 5.2, IRIX 6.5, Tru64 UNIX
4.0D and 5.1, GNU/Linux (i386), HP-UX 10.20, 11.00, and 11.11, and Solaris/SPARC
2.5.1, 2.6, 7, 8, 9 and 10.

• OpenPKG offers binaries for quite a number of platforms.
• The GFortran Wiki has links to GNU Fortran binaries for several platforms.

http://www.bullfreeware.com
http://pware.hvcc.edu
http://www.perzl.org/aix/
http://www.delorie.com/djgpp/
http://h8300-hms.sourceforge.net/
http://hpux.connect.org.uk/
ftp://sunsite.informatik.rwth-aachen.de/pub/packages/gcc_hpux/
http://www.sco.com/skunkware/devtools/index.html#gcc
http://www.sunfreeware.com/
http://www.blastwave.org/
http://www.opencsw.org/
http://jupiterrise.com/tgcware/
http://nekochan.net/
http://jupiterrise.com/tgcware/
http://sourceware.org/cygwin/
http://www.mingw.org/
ftp://ftp.thewrittenword.com/packages/by-name/
http://www.openpkg.org/
http://gcc.gnu.org/wiki/GFortranBinaries

Chapter 9: Host/target specific installation notes for GCC 49

9 Host/target specific installation notes for GCC

Please read this document carefully before installing the GNU Compiler Collection on your
machine.

Note that this list of install notes is not a list of supported hosts or targets. Not all
supported hosts and targets are listed here, only the ones that require host-specific or
target-specific information are.

alpha*-*-*

This section contains general configuration information for all alpha-based platforms using
ELF (in particular, ignore this section for DEC OSF/1, Digital UNIX and Tru64 UNIX).
In addition to reading this section, please read all other sections that match your target.

We require binutils 2.11.2 or newer. Previous binutils releases had a number of problems
with DWARF 2 debugging information, not the least of which is incorrect linking of shared
libraries.

alpha*-dec-osf5.1

Systems using processors that implement the DEC Alpha architecture and are running
the DEC/Compaq/HP Unix (DEC OSF/1, Digital UNIX, or Compaq/HP Tru64 UNIX)
operating system, for example the DEC Alpha AXP systems.

As of GCC 3.2, versions before alpha*-dec-osf4 are no longer supported. (These are
the versions which identify themselves as DEC OSF/1.) As of GCC 4.6, support for Tru64
UNIX V4.0 and V5.0 has been removed.

On Tru64 UNIX, virtual memory exhausted bootstrap failures may be
fixed by reconfiguring Kernel Virtual Memory and Swap parameters per
the /usr/sbin/sys_check Tuning Suggestions, or applying the patch in
http://gcc.gnu.org/ml/gcc/2002-08/msg00822.html. Depending on the OS
version used, you need a data segment size between 512 MB and 1 GB, so simply use
ulimit -Sd unlimited.

As of GNU binutils 2.21, neither GNU as nor GNU ld are supported on Tru64 UNIX,
so you must not configure GCC with ‘--with-gnu-as’ or ‘--with-gnu-ld’.

GCC writes a ‘.verstamp’ directive to the assembler output file unless it is
built as a cross-compiler. It gets the version to use from the system header file
‘/usr/include/stamp.h’. If you install a new version of Tru64 UNIX, you should rebuild
GCC to pick up the new version stamp.

GCC now supports both the native (ECOFF) debugging format used by DBX and GDB
and an encapsulated STABS format for use only with GDB. See the discussion of the
‘--with-stabs’ option of ‘configure’ above for more information on these formats and
how to select them.

There is a bug in DEC’s assembler that produces incorrect line numbers for ECOFF
format when the ‘.align’ directive is used. To work around this problem, GCC will not
emit such alignment directives while writing ECOFF format debugging information even
if optimization is being performed. Unfortunately, this has the very undesirable side-effect

http://gcc.gnu.org/ml/gcc/2002-08/msg00822.html

50 Installing GCC

that code addresses when ‘-O’ is specified are different depending on whether or not ‘-g’ is
also specified.

To avoid this behavior, specify ‘-gstabs+’ and use GDB instead of DBX. DEC is now
aware of this problem with the assembler and hopes to provide a fix shortly.

arc-*-elf

Argonaut ARC processor. This configuration is intended for embedded systems.

arm-*-elf

ARM-family processors. Subtargets that use the ELF object format require GNU binutils
2.13 or newer. Such subtargets include: arm-*-freebsd, arm-*-netbsdelf, arm-*-*linux
and arm-*-rtems.

avr

ATMEL AVR-family micro controllers. These are used in embedded applications. There are
no standard Unix configurations. See Section “AVR Options” in Using the GNU Compiler
Collection (GCC), for the list of supported MCU types.

Use ‘configure --target=avr --enable-languages="c"’ to configure GCC.
Further installation notes and other useful information about AVR tools can also be

obtained from:
• http://www.nongnu.org/avr/
• http://www.amelek.gda.pl/avr/

We strongly recommend using binutils 2.13 or newer.
The following error:

Error: register required

indicates that you should upgrade to a newer version of the binutils.

Blackfin

The Blackfin processor, an Analog Devices DSP. See Section “Blackfin Options” in Using
the GNU Compiler Collection (GCC),

More information, and a version of binutils with support for this processor, is available
at http://blackfin.uclinux.org

CRIS

CRIS is the CPU architecture in Axis Communications ETRAX system-on-a-chip series.
These are used in embedded applications.

See Section “CRIS Options” in Using the GNU Compiler Collection (GCC), for a list of
CRIS-specific options.

There are a few different CRIS targets:

cris-axis-elf
Mainly for monolithic embedded systems. Includes a multilib for the ‘v10’ core
used in ‘ETRAX 100 LX’.

http://www.nongnu.org/avr/
http://www.amelek.gda.pl/avr/
http://blackfin.uclinux.org

Chapter 9: Host/target specific installation notes for GCC 51

cris-axis-linux-gnu
A GNU/Linux port for the CRIS architecture, currently targeting ‘ETRAX 100
LX’ by default.

For cris-axis-elf you need binutils 2.11 or newer. For cris-axis-linux-gnu you
need binutils 2.12 or newer.

Pre-packaged tools can be obtained from ftp://ftp.axis.com/pub/axis/
tools/cris/compiler-kit/. More information about this platform is available at
http://developer.axis.com/.

CRX

The CRX CompactRISC architecture is a low-power 32-bit architecture with fast context
switching and architectural extensibility features.

See Section “CRX Options” in Using and Porting the GNU Compiler Collection (GCC),
Use ‘configure --target=crx-elf --enable-languages=c,c++’ to configure GCC for

building a CRX cross-compiler. The option ‘--target=crx-elf’ is also used to build the
‘newlib’ C library for CRX.

It is also possible to build libstdc++-v3 for the CRX architecture. This needs to be done
in a separate step with the following configure settings:

gcc/libstdc++-v3/configure --host=crx-elf --with-newlib \

--enable-sjlj-exceptions --enable-cxx-flags=’-fexceptions -frtti’

DOS

Please have a look at the binaries page.
You cannot install GCC by itself on MSDOS; it will not compile under any MSDOS

compiler except itself. You need to get the complete compilation package DJGPP, which
includes binaries as well as sources, and includes all the necessary compilation tools and
libraries.

--freebsd*

Support for FreeBSD 1 was discontinued in GCC 3.2. Support for FreeBSD 2 (and any
mutant a.out variants of FreeBSD 3) was discontinued in GCC 4.0.

In order to better utilize FreeBSD base system functionality and match the configuration
of the system compiler, GCC 4.5 and above as well as GCC 4.4 past 2010-06-20 leverage
SSP support in libc (which is present on FreeBSD 7 or later) and the use of __cxa_atexit
by default (on FreeBSD 6 or later). The use of dl_iterate_phdr inside ‘libgcc_s.so.1’
and boehm-gc (on FreeBSD 7 or later) is enabled by GCC 4.5 and above.

We support FreeBSD using the ELF file format with DWARF 2 debugging for all CPU
architectures. You may use ‘-gstabs’ instead of ‘-g’, if you really want the old debugging
format. There are no known issues with mixing object files and libraries with different
debugging formats. Otherwise, this release of GCC should now match more of the configu-
ration used in the stock FreeBSD configuration of GCC. In particular, ‘--enable-threads’
is now configured by default. However, as a general user, do not attempt to replace the
system compiler with this release. Known to bootstrap and check with good results on

ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/
ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/
http://developer.axis.com/
binaries.html

52 Installing GCC

FreeBSD 7.2-STABLE. In the past, known to bootstrap and check with good results on
FreeBSD 3.0, 3.4, 4.0, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9 and 5-CURRENT.

The version of binutils installed in ‘/usr/bin’ probably works with this release
of GCC. Bootstrapping against the latest GNU binutils and/or the version found in
‘/usr/ports/devel/binutils’ has been known to enable additional features and improve
overall testsuite results. However, it is currently known that boehm-gc (which itself is
required for java) may not configure properly on FreeBSD prior to the FreeBSD 7.0 release
with GNU binutils after 2.16.1.

h8300-hms

Renesas H8/300 series of processors.
Please have a look at the binaries page.
The calling convention and structure layout has changed in release 2.6. All code must be

recompiled. The calling convention now passes the first three arguments in function calls
in registers. Structures are no longer a multiple of 2 bytes.

hppa*-hp-hpux*

Support for HP-UX version 9 and older was discontinued in GCC 3.4.
We require using gas/binutils on all hppa platforms. Version 2.19 or later is recom-

mended.
It may be helpful to configure GCC with the ‘--with-gnu-as’ and ‘--with-as=...’

options to ensure that GCC can find GAS.
The HP assembler should not be used with GCC. It is rarely tested and may not work.

It shouldn’t be used with any languages other than C due to its many limitations.
Specifically, ‘-g’ does not work (HP-UX uses a peculiar debugging format which GCC

does not know about). It also inserts timestamps into each object file it creates, causing
the 3-stage comparison test to fail during a bootstrap. You should be able to continue by
saying ‘make all-host all-target’ after getting the failure from ‘make’.

Various GCC features are not supported. For example, it does not support weak symbols
or alias definitions. As a result, explicit template instantiations are required when using
C++. This makes it difficult if not impossible to build many C++ applications.

There are two default scheduling models for instructions. These are PROCES-
SOR 7100LC and PROCESSOR 8000. They are selected from the pa-risc architecture
specified for the target machine when configuring. PROCESSOR 8000 is the default.
PROCESSOR 7100LC is selected when the target is a ‘hppa1*’ machine.

The PROCESSOR 8000 model is not well suited to older processors. Thus, it is impor-
tant to completely specify the machine architecture when configuring if you want a model
other than PROCESSOR 8000. The macro TARGET SCHED DEFAULT can be defined
in BOOT CFLAGS if a different default scheduling model is desired.

As of GCC 4.0, GCC uses the UNIX 95 namespace for HP-UX 10.10 through 11.00,
and the UNIX 98 namespace for HP-UX 11.11 and later. This namespace change might
cause problems when bootstrapping with an earlier version of GCC or the HP compiler as
essentially the same namespace is required for an entire build. This problem can be avoided

binaries.html
./configure.html#with-gnu-as

Chapter 9: Host/target specific installation notes for GCC 53

in a number of ways. With HP cc, UNIX_STD can be set to ‘95’ or ‘98’. Another way is to
add an appropriate set of predefines to CC. The description for the ‘munix=’ option contains
a list of the predefines used with each standard.

More specific information to ‘hppa*-hp-hpux*’ targets follows.

hppa*-hp-hpux10

For hpux10.20, we highly recommend you pick up the latest sed patch PHCO_19798 from
HP.

The C++ ABI has changed incompatibly in GCC 4.0. COMDAT subspaces are used for
one-only code and data. This resolves many of the previous problems in using C++ on this
target. However, the ABI is not compatible with the one implemented under HP-UX 11
using secondary definitions.

hppa*-hp-hpux11

GCC 3.0 and up support HP-UX 11. GCC 2.95.x is not supported and cannot be used to
compile GCC 3.0 and up.

The libffi and libjava libraries haven’t been ported to 64-bit HP-UX and don’t build.

Refer to binaries for information about obtaining precompiled GCC binaries for HP-
UX. Precompiled binaries must be obtained to build the Ada language as it can’t be
bootstrapped using C. Ada is only available for the 32-bit PA-RISC runtime.

Starting with GCC 3.4 an ISO C compiler is required to bootstrap. The bundled compiler
supports only traditional C; you will need either HP’s unbundled compiler, or a binary
distribution of GCC.

It is possible to build GCC 3.3 starting with the bundled HP compiler, but the pro-
cess requires several steps. GCC 3.3 can then be used to build later versions. The
fastjar program contains ISO C code and can’t be built with the HP bundled compiler.
This problem can be avoided by not building the Java language. For example, use the
‘--enable-languages="c,c++,f77,objc"’ option in your configure command.

There are several possible approaches to building the distribution. Binutils can be built
first using the HP tools. Then, the GCC distribution can be built. The second approach is
to build GCC first using the HP tools, then build binutils, then rebuild GCC. There have
been problems with various binary distributions, so it is best not to start from a binary
distribution.

On 64-bit capable systems, there are two distinct targets. Different installation prefixes
must be used if both are to be installed on the same system. The ‘hppa[1-2]*-hp-hpux11*’
target generates code for the 32-bit PA-RISC runtime architecture and uses the HP linker.
The ‘hppa64-hp-hpux11*’ target generates 64-bit code for the PA-RISC 2.0 architecture.

The script config.guess now selects the target type based on the compiler detected during
configuration. You must define PATH or CC so that configure finds an appropriate compiler
for the initial bootstrap. When CC is used, the definition should contain the options that
are needed whenever CC is used.

Specifically, options that determine the runtime architecture must be in CC to correctly
select the target for the build. It is also convenient to place many other compiler op-

binaries.html

54 Installing GCC

tions in CC. For example, CC="cc -Ac +DA2.0W -Wp,-H16376 -D_CLASSIC_TYPES -D_HPUX_
SOURCE" can be used to bootstrap the GCC 3.3 branch with the HP compiler in 64-bit
K&R/bundled mode. The ‘+DA2.0W’ option will result in the automatic selection of the
‘hppa64-hp-hpux11*’ target. The macro definition table of cpp needs to be increased for a
successful build with the HP compiler. CLASSIC TYPES and HPUX SOURCE need to
be defined when building with the bundled compiler, or when using the ‘-Ac’ option. These
defines aren’t necessary with ‘-Ae’.

It is best to explicitly configure the ‘hppa64-hp-hpux11*’ target with the
‘--with-ld=...’ option. This overrides the standard search for ld. The two linkers
supported on this target require different commands. The default linker is determined
during configuration. As a result, it’s not possible to switch linkers in the middle of a GCC
build. This has been reported to sometimes occur in unified builds of binutils and GCC.

A recent linker patch must be installed for the correct operation of GCC 3.3 and later.
PHSS_26559 and PHSS_24304 are the oldest linker patches that are known to work. They
are for HP-UX 11.00 and 11.11, respectively. PHSS_24303, the companion to PHSS_24304,
might be usable but it hasn’t been tested. These patches have been superseded. Consult
the HP patch database to obtain the currently recommended linker patch for your system.

The patches are necessary for the support of weak symbols on the 32-bit port, and for the
running of initializers and finalizers. Weak symbols are implemented using SOM secondary
definition symbols. Prior to HP-UX 11, there are bugs in the linker support for secondary
symbols. The patches correct a problem of linker core dumps creating shared libraries
containing secondary symbols, as well as various other linking issues involving secondary
symbols.

GCC 3.3 uses the ELF DT INIT ARRAY and DT FINI ARRAY capabilities to run
initializers and finalizers on the 64-bit port. The 32-bit port uses the linker ‘+init’ and
‘+fini’ options for the same purpose. The patches correct various problems with the
+init/+fini options, including program core dumps. Binutils 2.14 corrects a problem on the
64-bit port resulting from HP’s non-standard use of the .init and .fini sections for array
initializers and finalizers.

Although the HP and GNU linkers are both supported for the ‘hppa64-hp-hpux11*’
target, it is strongly recommended that the HP linker be used for link editing on this
target.

At this time, the GNU linker does not support the creation of long branch stubs. As a
result, it can’t successfully link binaries containing branch offsets larger than 8 megabytes.
In addition, there are problems linking shared libraries, linking executables with ‘-static’,
and with dwarf2 unwind and exception support. It also doesn’t provide stubs for internal
calls to global functions in shared libraries, so these calls can’t be overloaded.

The HP dynamic loader does not support GNU symbol versioning, so symbol
versioning is not supported. It may be necessary to disable symbol versioning with
‘--disable-symvers’ when using GNU ld.

POSIX threads are the default. The optional DCE thread library is not supported, so
‘--enable-threads=dce’ does not work.

Chapter 9: Host/target specific installation notes for GCC 55

--linux-gnu

Versions of libstdc++-v3 starting with 3.2.1 require bug fixes present in glibc 2.2.5 and later.
More information is available in the libstdc++-v3 documentation.

i?86-*-linux*

As of GCC 3.3, binutils 2.13.1 or later is required for this platform. See bug 10877 for more
information.

If you receive Signal 11 errors when building on GNU/Linux, then it is possible you have
a hardware problem. Further information on this can be found on www.bitwizard.nl.

i?86-*-solaris2.[89]

The Sun assembler in Solaris 8 and 9 has several bugs and limitations. While GCC works
around them, several features are missing, so it is recommended to use the GNU assembler
instead. There is no bundled version, but the current version, from GNU binutils 2.21, is
known to work.

Solaris 2/x86 doesn’t support the execution of SSE/SSE2 instructions before Solaris 9
4/04, even if the CPU supports them. Programs will receive SIGILL if they try. The fix is
available both in Solaris 9 Update 6 and kernel patch 112234-12 or newer. There is no cor-
responding patch for Solaris 8. To avoid this problem, ‘-march’ defaults to ‘pentiumpro’ on
Solaris 8 and 9. If you have the patch installed, you can configure GCC with an appropriate
‘--with-arch’ option, but need GNU as for SSE2 support.

i?86-*-solaris2.10

Use this for Solaris 10 or later on x86 and x86-64 systems. This configuration is sup-
ported by GCC 4.0 and later versions only. Unlike ‘sparcv9-sun-solaris2*’, there is no
corresponding 64-bit configuration like ‘amd64-*-solaris2*’ or ‘x86_64-*-solaris2*’.

It is recommended that you configure GCC to use the GNU assembler, in
‘/usr/sfw/bin/gas’. The versions included in Solaris 10, from GNU binutils 2.15,
and Solaris 11, from GNU binutils 2.19, work fine, although the current version, from
GNU binutils 2.21, is known to work, too. Recent versions of the Sun assembler in
‘/usr/ccs/bin/as’ work almost as well, though.

For linking, the Sun linker, is preferred. If you want to use the GNU linker instead,
which is available in ‘/usr/sfw/bin/gld’, note that due to a packaging bug the version in
Solaris 10, from GNU binutils 2.15, cannot be used, while the version in Solaris 11, from
GNU binutils 2.19, works, as does the latest version, from GNU binutils 2.21.

To use GNU as, configure with the options ‘--with-gnu-as --with-as=/usr/sfw/bin/
gas’. It may be necessary to configure with ‘--without-gnu-ld --with-ld=/usr/ccs/
bin/ld’ to guarantee use of Sun ld.

ia64-*-linux

IA-64 processor (also known as IPF, or Itanium Processor Family) running GNU/Linux.
If you are using the installed system libunwind library with ‘--with-system-libunwind’,

then you must use libunwind 0.98 or later.

http://gcc.gnu.org/PR10877
http://www.bitwizard.nl/sig11/

56 Installing GCC

None of the following versions of GCC has an ABI that is compatible with any of the
other versions in this list, with the exception that Red Hat 2.96 and Trillian 000171 are
compatible with each other: 3.1, 3.0.2, 3.0.1, 3.0, Red Hat 2.96, and Trillian 000717. This
primarily affects C++ programs and programs that create shared libraries. GCC 3.1 or later
is recommended for compiling linux, the kernel. As of version 3.1 GCC is believed to be
fully ABI compliant, and hence no more major ABI changes are expected.

ia64-*-hpux*

Building GCC on this target requires the GNU Assembler. The bundled HP assembler will
not work. To prevent GCC from using the wrong assembler, the option ‘--with-gnu-as’
may be necessary.

The GCC libunwind library has not been ported to HPUX. This means that
for GCC versions 3.2.3 and earlier, ‘--enable-libunwind-exceptions’ is required
to build GCC. For GCC 3.3 and later, this is the default. For gcc 3.4.3 and later,
‘--enable-libunwind-exceptions’ is removed and the system libunwind library will
always be used.

-ibm-aix

Support for AIX version 3 and older was discontinued in GCC 3.4. Support for AIX version
4.2 and older was discontinued in GCC 4.5.

“out of memory” bootstrap failures may indicate a problem with process resource limits
(ulimit). Hard limits are configured in the ‘/etc/security/limits’ system configuration
file.

GCC can bootstrap with recent versions of IBM XLC, but bootstrapping with an earlier
release of GCC is recommended. Bootstrapping with XLC requires a larger data segment,
which can be enabled through the LDR CNTRL environment variable, e.g.,

% LDR_CNTRL=MAXDATA=0x50000000

% export LDR_CNTRL

One can start with a pre-compiled version of GCC to build from sources. One may
delete GCC’s “fixed” header files when starting with a version of GCC built for an earlier
release of AIX.

To speed up the configuration phases of bootstrapping and installing GCC, one may use
GNU Bash instead of AIX /bin/sh, e.g.,

% CONFIG_SHELL=/opt/freeware/bin/bash

% export CONFIG_SHELL

and then proceed as described in the build instructions, where we strongly recommend
specifying an absolute path to invoke srcdir/configure.

Because GCC on AIX is built as a 32-bit executable by default, (although it can generate
64-bit programs) the GMP and MPFR libraries required by gfortran must be 32-bit libraries.
Building GMP and MPFR as static archive libraries works better than shared libraries.

Errors involving alloca when building GCC generally are due to an incorrect definition
of CC in the Makefile or mixing files compiled with the native C compiler and GCC. During
the stage1 phase of the build, the native AIX compiler must be invoked as cc (not xlc).
Once configure has been informed of xlc, one needs to use ‘make distclean’ to remove the

build.html

Chapter 9: Host/target specific installation notes for GCC 57

configure cache files and ensure that CC environment variable does not provide a definition
that will confuse configure. If this error occurs during stage2 or later, then the problem
most likely is the version of Make (see above).

The native as and ld are recommended for bootstrapping on AIX. The GNU Assembler,
GNU Linker, and GNU Binutils version 2.20 is required to bootstrap on AIX 5. The native
AIX tools do interoperate with GCC.

Building ‘libstdc++.a’ requires a fix for an AIX Assembler bug APAR IY26685 (AIX
4.3) or APAR IY25528 (AIX 5.1). It also requires a fix for another AIX Assembler bug
and a co-dependent AIX Archiver fix referenced as APAR IY53606 (AIX 5.2) or as APAR
IY54774 (AIX 5.1)

‘libstdc++’ in GCC 3.4 increments the major version number of the shared object and
GCC installation places the ‘libstdc++.a’ shared library in a common location which will
overwrite the and GCC 3.3 version of the shared library. Applications either need to be
re-linked against the new shared library or the GCC 3.1 and GCC 3.3 versions of the
‘libstdc++’ shared object needs to be available to the AIX runtime loader. The GCC
3.1 ‘libstdc++.so.4’, if present, and GCC 3.3 ‘libstdc++.so.5’ shared objects can be
installed for runtime dynamic loading using the following steps to set the ‘F_LOADONLY’ flag
in the shared object for each multilib ‘libstdc++.a’ installed:

Extract the shared objects from the currently installed ‘libstdc++.a’ archive:
% ar -x libstdc++.a libstdc++.so.4 libstdc++.so.5

Enable the ‘F_LOADONLY’ flag so that the shared object will be available for runtime
dynamic loading, but not linking:

% strip -e libstdc++.so.4 libstdc++.so.5

Archive the runtime-only shared object in the GCC 3.4 ‘libstdc++.a’ archive:
% ar -q libstdc++.a libstdc++.so.4 libstdc++.so.5

Linking executables and shared libraries may produce warnings of duplicate symbols.
The assembly files generated by GCC for AIX always have included multiple symbol def-
initions for certain global variable and function declarations in the original program. The
warnings should not prevent the linker from producing a correct library or runnable exe-
cutable.

AIX 4.3 utilizes a “large format” archive to support both 32-bit and 64-bit object mod-
ules. The routines provided in AIX 4.3.0 and AIX 4.3.1 to parse archive libraries did not
handle the new format correctly. These routines are used by GCC and result in error mes-
sages during linking such as “not a COFF file”. The version of the routines shipped with
AIX 4.3.1 should work for a 32-bit environment. The ‘-g’ option of the archive command
may be used to create archives of 32-bit objects using the original “small format”. A correct
version of the routines is shipped with AIX 4.3.2 and above.

Some versions of the AIX binder (linker) can fail with a relocation overflow severe error
when the ‘-bbigtoc’ option is used to link GCC-produced object files into an executable
that overflows the TOC. A fix for APAR IX75823 (OVERFLOW DURING LINK WHEN
USING GCC AND -BBIGTOC) is available from IBM Customer Support and from its
techsupport.services.ibm.com website as PTF U455193.

The AIX 4.3.2.1 linker (bos.rte.bind cmds Level 4.3.2.1) will dump core with a segmen-
tation fault when invoked by any version of GCC. A fix for APAR IX87327 is available

http://techsupport.services.ibm.com/

58 Installing GCC

from IBM Customer Support and from its techsupport.services.ibm.com website as PTF
U461879. This fix is incorporated in AIX 4.3.3 and above.

The initial assembler shipped with AIX 4.3.0 generates incorrect object files. A
fix for APAR IX74254 (64BIT DISASSEMBLED OUTPUT FROM COMPILER
FAILS TO ASSEMBLE/BIND) is available from IBM Customer Support and from its
techsupport.services.ibm.com website as PTF U453956. This fix is incorporated in AIX
4.3.1 and above.

AIX provides National Language Support (NLS). Compilers and assemblers use NLS to
support locale-specific representations of various data formats including floating-point num-
bers (e.g., ‘.’ vs ‘,’ for separating decimal fractions). There have been problems reported
where GCC does not produce the same floating-point formats that the assembler expects.
If one encounters this problem, set the LANG environment variable to ‘C’ or ‘En_US’.

A default can be specified with the ‘-mcpu=cpu_type ’ switch and using the configure
option ‘--with-cpu-cpu_type ’.

iq2000-*-elf

Vitesse IQ2000 processors. These are used in embedded applications. There are no standard
Unix configurations.

lm32-*-elf

Lattice Mico32 processor. This configuration is intended for embedded systems.

lm32-*-uclinux

Lattice Mico32 processor. This configuration is intended for embedded systems running
uClinux.

m32c-*-elf

Renesas M32C processor. This configuration is intended for embedded systems.

m32r-*-elf

Renesas M32R processor. This configuration is intended for embedded systems.

m6811-elf

Motorola 68HC11 family micro controllers. These are used in embedded applications. There
are no standard Unix configurations.

m6812-elf

Motorola 68HC12 family micro controllers. These are used in embedded applications. There
are no standard Unix configurations.

http://techsupport.services.ibm.com/
http://techsupport.services.ibm.com/

Chapter 9: Host/target specific installation notes for GCC 59

m68k-*-*

By default, ‘m68k-*-elf*’, ‘m68k-*-rtems’, ‘m68k-*-uclinux’ and ‘m68k-*-linux’ build
libraries for both M680x0 and ColdFire processors. If you only need the M680x0 libraries,
you can omit the ColdFire ones by passing ‘--with-arch=m68k’ to configure. Alterna-
tively, you can omit the M680x0 libraries by passing ‘--with-arch=cf’ to configure. These
targets default to 5206 or 5475 code as appropriate for the target system when configured
with ‘--with-arch=cf’ and 68020 code otherwise.

The ‘m68k-*-netbsd’ and ‘m68k-*-openbsd’ targets also support the ‘--with-arch’
option. They will generate ColdFire CFV4e code when configured with ‘--with-arch=cf’
and 68020 code otherwise.

You can override the default processors listed above by configuring with
‘--with-cpu=target ’. This target can either be a ‘-mcpu’ argument or one of the
following values: ‘m68000’, ‘m68010’, ‘m68020’, ‘m68030’, ‘m68040’, ‘m68060’, ‘m68020-40’
and ‘m68020-60’.

m68k-*-uclinux

GCC 4.3 changed the uClinux configuration so that it uses the ‘m68k-linux-gnu’ ABI
rather than the ‘m68k-elf’ ABI. It also added improved support for C++ and flat shared
libraries, both of which were ABI changes. However, you can still use the original ABI by
configuring for ‘m68k-uclinuxoldabi’ or ‘m68k-vendor-uclinuxoldabi’.

mep-*-elf

Toshiba Media embedded Processor. This configuration is intended for embedded systems.

microblaze-*-elf

Xilinx MicroBlaze processor. This configuration is intended for embedded systems.

mips-*-*

If on a MIPS system you get an error message saying “does not have gp sections for all
it’s [sic] sectons [sic]”, don’t worry about it. This happens whenever you use GAS with the
MIPS linker, but there is not really anything wrong, and it is okay to use the output file.
You can stop such warnings by installing the GNU linker.

It would be nice to extend GAS to produce the gp tables, but they are optional, and
there should not be a warning about their absence.

The libstdc++ atomic locking routines for MIPS targets requires MIPS II and later. A
patch went in just after the GCC 3.3 release to make ‘mips*-*-*’ use the generic im-
plementation instead. You can also configure for ‘mipsel-elf’ as a workaround. The
‘mips*-*-linux*’ target continues to use the MIPS II routines. More work on this is
expected in future releases.

The built-in __sync_* functions are available on MIPS II and later systems and oth-
ers that support the ‘ll’, ‘sc’ and ‘sync’ instructions. This can be overridden by passing
‘--with-llsc’ or ‘--without-llsc’ when configuring GCC. Since the Linux kernel em-
ulates these instructions if they are missing, the default for ‘mips*-*-linux*’ targets is

60 Installing GCC

‘--with-llsc’. The ‘--with-llsc’ and ‘--without-llsc’ configure options may be over-
ridden at compile time by passing the ‘-mllsc’ or ‘-mno-llsc’ options to the compiler.

MIPS systems check for division by zero (unless ‘-mno-check-zero-division’ is passed
to the compiler) by generating either a conditional trap or a break instruction. Using
trap results in smaller code, but is only supported on MIPS II and later. Also, some
versions of the Linux kernel have a bug that prevents trap from generating the proper
signal (SIGFPE). To enable the use of break, use the ‘--with-divide=breaks’ configure
option when configuring GCC. The default is to use traps on systems that support them.

Cross-compilers for the MIPS as target using the MIPS assembler currently do not work,
because the auxiliary programs ‘mips-tdump.c’ and ‘mips-tfile.c’ can’t be compiled on
anything but a MIPS. It does work to cross compile for a MIPS if you use the GNU
assembler and linker.

The assembler from GNU binutils 2.17 and earlier has a bug in the way it sorts relocations
for REL targets (o32, o64, EABI). This can cause bad code to be generated for simple
C++ programs. Also the linker from GNU binutils versions prior to 2.17 has a bug which
causes the runtime linker stubs in very large programs, like ‘libgcj.so’, to be incorrectly
generated. GNU Binutils 2.18 and later (and snapshots made after Nov. 9, 2006) should
be free from both of these problems.

mips-sgi-irix5

Support for IRIX 5 has been removed in GCC 4.6.

mips-sgi-irix6

Support for IRIX 6 releases before 6.5 has been removed in GCC 4.6, as well as support for
the O32 ABI. It is strongly recommended to upgrade to at least IRIX 6.5.18. This release
introduced full ISO C99 support, though for the N32 and N64 ABIs only.

To build and use GCC on IRIX 6.5, you need the IRIX Development Foundation (IDF)
and IRIX Development Libraries (IDL). They are included with the IRIX 6.5 media.

If you are using SGI’s MIPSpro cc as your bootstrap compiler, you must ensure that
the N32 ABI is in use. To test this, compile a simple C file with cc and then run file on
the resulting object file. The output should look like:

test.o: ELF N32 MSB ...

If you see:
test.o: ELF 32-bit MSB ...

or
test.o: ELF 64-bit MSB ...

then your version of cc uses the O32 or N64 ABI by default. You should set the environment
variable CC to ‘cc -n32’ before configuring GCC.

If you want the resulting gcc to run on old 32-bit systems with the MIPS R4400 CPU,
you need to ensure that only code for the ‘mips3’ instruction set architecture (ISA) is
generated. While GCC 3.x does this correctly, both GCC 2.95 and SGI’s MIPSpro cc
may change the ISA depending on the machine where GCC is built. Using one of them as
the bootstrap compiler may result in ‘mips4’ code, which won’t run at all on ‘mips3’-only
systems. For the test program above, you should see:

Chapter 9: Host/target specific installation notes for GCC 61

test.o: ELF N32 MSB mips-3 ...

If you get:
test.o: ELF N32 MSB mips-4 ...

instead, you should set the environment variable CC to ‘cc -n32 -mips3’ or ‘gcc -mips3’
respectively before configuring GCC.

MIPSpro C 7.4 may cause bootstrap failures, due to a bug when inlining memcmp. Either
add -U__INLINE_INTRINSICS to the CC environment variable as a workaround or upgrade
to MIPSpro C 7.4.1m.

GCC on IRIX 6.5 is usually built to support the N32 and N64 ABIs. If you build GCC
on a system that doesn’t have the N64 libraries installed or cannot run 64-bit binaries, you
need to configure with ‘--disable-multilib’ so GCC doesn’t try to use them. Look for
‘/usr/lib64/libc.so.1’ to see if you have the 64-bit libraries installed.

GCC must be configured with GNU as. The latest version, from GNU binutils 2.21,
is known to work. On the other hand, bootstrap fails with GNU ld at least since GNU
binutils 2.17.

The ‘--enable-libgcj’ option is disabled by default: IRIX 6 uses a very low default
limit (20480) for the command line length. Although libtool contains a workaround for
this problem, at least the N64 ‘libgcj’ is known not to build despite this, running into an
internal error of the native ld. A sure fix is to increase this limit (‘ncargs’) to its maximum
of 262144 bytes. If you have root access, you can use the systune command to do this.

wchar_t support in ‘libstdc++’ is not available for old IRIX 6.5.x releases, x < 19. The
problem cannot be autodetected and in order to build GCC for such targets you need to
configure with ‘--disable-wchar_t’.

moxie-*-elf

The moxie processor. See http://moxielogic.org/ for more information about this pro-
cessor.

powerpc-*-*

You can specify a default version for the ‘-mcpu=cpu_type ’ switch by using the configure
option ‘--with-cpu-cpu_type ’.

You will need binutils 2.15 or newer for a working GCC.

powerpc-*-darwin*

PowerPC running Darwin (Mac OS X kernel).

Pre-installed versions of Mac OS X may not include any developer tools, meaning
that you will not be able to build GCC from source. Tool binaries are available at
http://opensource.apple.com/.

This version of GCC requires at least cctools-590.36. The cctools-590.36 package refer-
enced from http://gcc.gnu.org/ml/gcc/2006-03/msg00507.html will not work on sys-
tems older than 10.3.9 (aka darwin7.9.0).

http://moxielogic.org/
ftp://ftp.kernel.org/pub/linux/devel/binutils
http://opensource.apple.com/
http://gcc.gnu.org/ml/gcc/2006-03/msg00507.html

62 Installing GCC

powerpc-*-elf

PowerPC system in big endian mode, running System V.4.

powerpc*-*-linux-gnu*

PowerPC system in big endian mode running Linux.

powerpc-*-netbsd*

PowerPC system in big endian mode running NetBSD.

powerpc-*-eabisim

Embedded PowerPC system in big endian mode for use in running under the PSIM simu-
lator.

powerpc-*-eabi

Embedded PowerPC system in big endian mode.

powerpcle-*-elf

PowerPC system in little endian mode, running System V.4.

powerpcle-*-eabisim

Embedded PowerPC system in little endian mode for use in running under the PSIM sim-
ulator.

powerpcle-*-eabi

Embedded PowerPC system in little endian mode.

rx-*-elf

The Renesas RX processor. See http://eu.renesas.com/fmwk.jsp?cnt=rx600_series_
landing.jsp&fp=/products/mpumcu/rx_family/rx600_series for more information
about this processor.

s390-*-linux*

S/390 system running GNU/Linux for S/390.

s390x-*-linux*

zSeries system (64-bit) running GNU/Linux for zSeries.

s390x-ibm-tpf*

zSeries system (64-bit) running TPF. This platform is supported as cross-compilation target
only.

http://eu.renesas.com/fmwk.jsp?cnt=rx600_series_landing.jsp&fp=/products/mpumcu/rx_family/rx600_series
http://eu.renesas.com/fmwk.jsp?cnt=rx600_series_landing.jsp&fp=/products/mpumcu/rx_family/rx600_series

Chapter 9: Host/target specific installation notes for GCC 63

--solaris2*

Support for Solaris 7 has been removed in GCC 4.6.

Sun does not ship a C compiler with Solaris 2, though you can download the Sun Studio
compilers for free. Alternatively, you can install a pre-built GCC to bootstrap and install
GCC. See the binaries page for details.

The Solaris 2 /bin/sh will often fail to configure ‘libstdc++-v3’, ‘boehm-gc’ or
‘libjava’. We therefore recommend using the following initial sequence of commands

% CONFIG_SHELL=/bin/ksh

% export CONFIG_SHELL

and proceed as described in the configure instructions. In addition we strongly recommend
specifying an absolute path to invoke srcdir/configure.

Solaris 2 comes with a number of optional OS packages. Some of these are needed to
use GCC fully, namely SUNWarc, SUNWbtool, SUNWesu, SUNWhea, SUNWlibm, SUNWsprot, and
SUNWtoo. If you did not install all optional packages when installing Solaris 2, you will need
to verify that the packages that GCC needs are installed.

To check whether an optional package is installed, use the pkginfo command. To add
an optional package, use the pkgadd command. For further details, see the Solaris 2 docu-
mentation.

Trying to use the linker and other tools in ‘/usr/ucb’ to install GCC has been observed
to cause trouble. For example, the linker may hang indefinitely. The fix is to remove
‘/usr/ucb’ from your PATH.

The build process works more smoothly with the legacy Sun tools so, if you have
‘/usr/xpg4/bin’ in your PATH, we recommend that you place ‘/usr/bin’ before
‘/usr/xpg4/bin’ for the duration of the build.

We recommend the use of the Sun assembler or the GNU assembler, in conjunction
with the Sun linker. The GNU as versions included in Solaris 10, from GNU binutils
2.15, and Solaris 11, from GNU binutils 2.19, are known to work. They can be found
in ‘/usr/sfw/bin/gas’. Current versions of GNU binutils (2.21) are known to work as
well. Note that your mileage may vary if you use a combination of the GNU tools and the
Sun tools: while the combination GNU as + Sun ld should reasonably work, the reverse
combination Sun as + GNU ld is known to cause memory corruption at runtime in some
cases for C++ programs. GNU ld usually works as well, although the version included in
Solaris 10 cannot be used due to several bugs. Again, the current version (2.21) is known
to work, but generally lacks platform specific features, so better stay with Sun ld.

To enable symbol versioning in ‘libstdc++’ with Sun ld, you need to have any version
of GNU c++filt, which is part of GNU binutils. ‘libstdc++’ symbol versioning will be
disabled if no appropriate version is found. Sun c++filt from the Sun Studio compilers
does not work.

Sun bug 4296832 turns up when compiling X11 headers with GCC 2.95 or newer: g++
will complain that types are missing. These headers assume that omitting the type means
int; this assumption worked for C90 but is wrong for C++, and is now wrong for C99 also.

g++ accepts such (invalid) constructs with the option ‘-fpermissive’; it will assume
that any missing type is int (as defined by C90).

binaries.html
configure.html

64 Installing GCC

There are patches for Solaris 8 (108652-24 or newer for SPARC, 108653-22 for Intel) that
fix this bug.

Sun bug 4927647 sometimes causes random spurious testsuite failures related to missing
diagnostic output. This bug doesn’t affect GCC itself, rather it is a kernel bug triggered by
the expect program which is used only by the GCC testsuite driver. When the bug causes
the expect program to miss anticipated output, extra testsuite failures appear.

There are patches for Solaris 8 (117350-12 or newer for SPARC, 117351-12 or newer for
Intel) and Solaris 9 (117171-11 or newer for SPARC, 117172-11 or newer for Intel) that
address this problem.

Solaris 8 provides an alternate implementation of the thread libraries, ‘libpthread’
and ‘libthread’. They are required for TLS support and have been made the default in
Solaris 9, so they are always used on Solaris 8.

Thread-local storage (TLS) is supported in Solaris 8 and 9, but requires some patches.
The ‘libthread’ patches provide the __tls_get_addr (SPARC, 64-bit x86) resp. ___tls_
get_addr (32-bit x86) functions. On Solaris 8, you need 108993-26 or newer on SPARC,
108994-26 or newer on Intel. On Solaris 9, the necessary support on SPARC is present
since FCS, while 114432-05 or newer is required on Intel. Additionally, on Solaris 8, patch
109147-14 or newer on SPARC or 109148-22 or newer on Intel are required for the Sun ld
and runtime linker (ld.so.1) support. Again, Solaris 9/SPARC works since FCS, while
113986-02 is required on Intel. The linker patches must be installed even if GNU ld is
used. Sun as in Solaris 8 and 9 doesn’t support the necessary relocations, so GNU as must
be used. The configure script checks for those prerequisites and automatically enables
TLS support if they are met. Although those minimal patch versions should work, it is
recommended to use the latest patch versions which include additional bug fixes.

sparc*-*-*

This section contains general configuration information for all SPARC-based platforms. In
addition to reading this section, please read all other sections that match your target.

Newer versions of the GNU Multiple Precision Library (GMP), the MPFR library and
the MPC library are known to be miscompiled by earlier versions of GCC on these platforms.
We therefore recommend the use of the exact versions of these libraries listed as minimal
versions in the prerequisites.

sparc-sun-solaris2*

When GCC is configured to use GNU binutils 2.14 or later, the binaries produced are
smaller than the ones produced using Sun’s native tools; this difference is quite significant
for binaries containing debugging information.

Starting with Solaris 7, the operating system is capable of executing 64-bit SPARC V9
binaries. GCC 3.1 and later properly supports this; the ‘-m64’ option enables 64-bit code
generation. However, if all you want is code tuned for the UltraSPARC CPU, you should
try the ‘-mtune=ultrasparc’ option instead, which produces code that, unlike full 64-bit
code, can still run on non-UltraSPARC machines.

When configuring on a Solaris 7 or later system that is running a kernel that supports
only 32-bit binaries, one must configure with ‘--disable-multilib’, since we will not be
able to build the 64-bit target libraries.

prerequisites.html

Chapter 9: Host/target specific installation notes for GCC 65

GCC 3.3 and GCC 3.4 trigger code generation bugs in earlier versions of the GNU
compiler (especially GCC 3.0.x versions), which lead to the miscompilation of the stage1
compiler and the subsequent failure of the bootstrap process. A workaround is to use GCC
3.2.3 as an intermediary stage, i.e. to bootstrap that compiler with the base compiler and
then use it to bootstrap the final compiler.

GCC 3.4 triggers a code generation bug in versions 5.4 (Sun ONE Studio 7) and 5.5
(Sun ONE Studio 8) of the Sun compiler, which causes a bootstrap failure in form of a
miscompilation of the stage1 compiler by the Sun compiler. This is Sun bug 4974440. This
is fixed with patch 112760-07.

GCC 3.4 changed the default debugging format from Stabs to DWARF-2 for 32-bit code
on Solaris 7 and later. If you use the Sun assembler, this change apparently runs afoul of
Sun bug 4910101 (which is referenced as an x86-only problem by Sun, probably because
they do not use DWARF-2). A symptom of the problem is that you cannot compile C++
programs like groff 1.19.1 without getting messages similar to the following:

ld: warning: relocation error: R_SPARC_UA32: ...

external symbolic relocation against non-allocatable section

.debug_info cannot be processed at runtime: relocation ignored.

To work around this problem, compile with ‘-gstabs+’ instead of plain ‘-g’.
When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the

MPC library on a Solaris 7 or later system, the canonical target triplet must be specified as
the build parameter on the configure line. This target triplet can be obtained by invoking
./config.guess in the toplevel source directory of GCC (and not that of GMP or MPFR
or MPC). For example on a Solaris 9 system:

% ./configure --build=sparc-sun-solaris2.9 --prefix=xxx

sparc-sun-solaris2.10

There is a bug in older versions of the Sun assembler which breaks thread-local storage
(TLS). A typical error message is

ld: fatal: relocation error: R_SPARC_TLS_LE_HIX22: file /var/tmp//ccamPA1v.o:

symbol <unknown>: bad symbol type SECT: symbol type must be TLS

This bug is fixed in Sun patch 118683-03 or later.

sparc-*-linux*

GCC versions 3.0 and higher require binutils 2.11.2 and glibc 2.2.4 or newer on this plat-
form. All earlier binutils and glibc releases mishandled unaligned relocations on sparc-*-*
targets.

sparc64-*-solaris2*

When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the
MPC library, the canonical target triplet must be specified as the build parameter on the
configure line. For example on a Solaris 9 system:

% ./configure --build=sparc64-sun-solaris2.9 --prefix=xxx

The following compiler flags must be specified in the configure step in order to bootstrap
this target with the Sun compiler:

66 Installing GCC

% CC="cc -xarch=v9 -xildoff" srcdir/configure [options] [target]

‘-xarch=v9’ specifies the SPARC-V9 architecture to the Sun toolchain and ‘-xildoff’ turns
off the incremental linker.

sparcv9-*-solaris2*

This is a synonym for ‘sparc64-*-solaris2*’.

--vxworks*

Support for VxWorks is in flux. At present GCC supports only the very recent VxWorks
5.5 (aka Tornado 2.2) release, and only on PowerPC. We welcome patches for other archi-
tectures supported by VxWorks 5.5. Support for VxWorks AE would also be welcome; we
believe this is merely a matter of writing an appropriate “configlette” (see below). We are
not interested in supporting older, a.out or COFF-based, versions of VxWorks in GCC 3.

VxWorks comes with an older version of GCC installed in ‘$WIND_BASE/host’; we recom-
mend you do not overwrite it. Choose an installation prefix entirely outside $WIND BASE.
Before running configure, create the directories ‘prefix ’ and ‘prefix/bin’. Link or copy
the appropriate assembler, linker, etc. into ‘prefix/bin’, and set your PATH to include
that directory while running both configure and make.

You must give configure the ‘--with-headers=$WIND_BASE/target/h’ switch so that
it can find the VxWorks system headers. Since VxWorks is a cross compilation target
only, you must also specify ‘--target=target ’. configure will attempt to create the
directory ‘prefix/target/sys-include’ and copy files into it; make sure the user running
configure has sufficient privilege to do so.

GCC’s exception handling runtime requires a special “configlette” module,
‘contrib/gthr_supp_vxw_5x.c’. Follow the instructions in that file to add the module to
your kernel build. (Future versions of VxWorks will incorporate this module.)

x86 64-*-*, amd64-*-*

GCC supports the x86-64 architecture implemented by the AMD64 processor (amd64-*-*
is an alias for x86 64-*-*) on GNU/Linux, FreeBSD and NetBSD. On GNU/Linux the
default is a bi-arch compiler which is able to generate both 64-bit x86-64 and 32-bit x86
code (via the ‘-m32’ switch).

xtensa*-*-elf

This target is intended for embedded Xtensa systems using the ‘newlib’ C library. It uses
ELF but does not support shared objects. Designed-defined instructions specified via the
Tensilica Instruction Extension (TIE) language are only supported through inline assembly.

The Xtensa configuration information must be specified prior to building GCC. The
‘include/xtensa-config.h’ header file contains the configuration information. If you cre-
ated your own Xtensa configuration with the Xtensa Processor Generator, the downloaded
files include a customized copy of this header file, which you can use to replace the default
header file.

Chapter 9: Host/target specific installation notes for GCC 67

xtensa*-*-linux*

This target is for Xtensa systems running GNU/Linux. It supports ELF shared objects and
the GNU C library (glibc). It also generates position-independent code (PIC) regardless of
whether the ‘-fpic’ or ‘-fPIC’ options are used. In other respects, this target is the same
as the ‘xtensa*-*-elf’ target.

Microsoft Windows

Intel 16-bit versions

The 16-bit versions of Microsoft Windows, such as Windows 3.1, are not supported.
However, the 32-bit port has limited support for Microsoft Windows 3.11 in the Win32s

environment, as a target only. See below.

Intel 32-bit versions

The 32-bit versions of Windows, including Windows 95, Windows NT, Windows XP, and
Windows Vista, are supported by several different target platforms. These targets differ in
which Windows subsystem they target and which C libraries are used.
• Cygwin *-*-cygwin: Cygwin provides a user-space Linux API emulation layer in the

Win32 subsystem.
• Interix *-*-interix: The Interix subsystem provides native support for POSIX.
• MinGW *-*-mingw32: MinGW is a native GCC port for the Win32 subsystem that

provides a subset of POSIX.
• MKS i386-pc-mks: NuTCracker from MKS. See http://www.mkssoftware.com/ for

more information.

Intel 64-bit versions

GCC contains support for x86-64 using the mingw-w64 runtime library, available from
http://mingw-w64.sourceforge.net/. This library should be used with the target triple
x86 64-pc-mingw32.

Presently Windows for Itanium is not supported.

Windows CE

Windows CE is supported as a target only on ARM (arm-wince-pe), Hitachi SuperH (sh-
wince-pe), and MIPS (mips-wince-pe).

Other Windows Platforms

GCC no longer supports Windows NT on the Alpha or PowerPC.
GCC no longer supports the Windows POSIX subsystem. However, it does support the

Interix subsystem. See above.
Old target names including *-*-winnt and *-*-windowsnt are no longer used.
PW32 (i386-pc-pw32) support was never completed, and the project seems to be inactive.

See http://pw32.sourceforge.net/ for more information.
UWIN support has been removed due to a lack of maintenance.

#xtensa*-*-elf
#x-x-cygwin
#x-x-interix
#x-x-mingw32
http://www.mkssoftware.com/
http://mingw-w64.sourceforge.net/
http://pw32.sourceforge.net/

68 Installing GCC

--cygwin

Ports of GCC are included with the Cygwin environment.

GCC will build under Cygwin without modification; it does not build with Microsoft’s
C++ compiler and there are no plans to make it do so.

The Cygwin native compiler can be configured to target any 32-bit x86 cpu architecture
desired; the default is i686-pc-cygwin. It should be used with as up-to-date a version
of binutils as possible; use either the latest official GNU binutils release in the Cygwin
distribution, or version 2.20 or above if building your own.

--interix

The Interix target is used by OpenNT, Interix, Services For UNIX (SFU), and Subsystem for
UNIX-based Applications (SUA). Applications compiled with this target run in the Interix
subsystem, which is separate from the Win32 subsystem. This target was last known to
work in GCC 3.3.

--mingw32

GCC will build with and support only MinGW runtime 3.12 and later. Earlier versions of
headers are incompatible with the new default semantics of extern inline in -std=c99
and -std=gnu99 modes.

Older systems

GCC contains support files for many older (1980s and early 1990s) Unix variants. For the
most part, support for these systems has not been deliberately removed, but it has not been
maintained for several years and may suffer from bitrot.

Starting with GCC 3.1, each release has a list of “obsoleted” systems. Support
for these systems is still present in that release, but configure will fail unless the
‘--enable-obsolete’ option is given. Unless a maintainer steps forward, support for these
systems will be removed from the next release of GCC.

Support for old systems as hosts for GCC can cause problems if the workarounds for
compiler, library and operating system bugs affect the cleanliness or maintainability of the
rest of GCC. In some cases, to bring GCC up on such a system, if still possible with current
GCC, may require first installing an old version of GCC which did work on that system, and
using it to compile a more recent GCC, to avoid bugs in the vendor compiler. Old releases
of GCC 1 and GCC 2 are available in the ‘old-releases’ directory on the GCC mirror
sites. Header bugs may generally be avoided using fixincludes, but bugs or deficiencies
in libraries and the operating system may still cause problems.

Support for older systems as targets for cross-compilation is less problematic than sup-
port for them as hosts for GCC; if an enthusiast wishes to make such a target work again
(including resurrecting any of the targets that never worked with GCC 2, starting from the
last version before they were removed), patches following the usual requirements would be
likely to be accepted, since they should not affect the support for more modern targets.

For some systems, old versions of GNU binutils may also be useful, and are available
from ‘pub/binutils/old-releases’ on sourceware.org mirror sites.

http://www.cygwin.com/
../mirrors.html
../mirrors.html
../contribute.html
http://sourceware.org/mirrors.html

Chapter 9: Host/target specific installation notes for GCC 69

Some of the information on specific systems above relates to such older systems, but
much of the information about GCC on such systems (which may no longer be applicable
to current GCC) is to be found in the GCC texinfo manual.

all ELF targets (SVR4, Solaris 2, etc.)

C++ support is significantly better on ELF targets if you use the GNU linker; duplicate
copies of inlines, vtables and template instantiations will be discarded automatically.

./configure.html#with-gnu-ld

Chapter 10: Old installation documentation 71

10 Old installation documentation

Note most of this information is out of date and superseded by the previous chapters of this
manual. It is provided for historical reference only, because of a lack of volunteers to merge
it into the main manual.

Here is the procedure for installing GCC on a GNU or Unix system.
1. If you have chosen a configuration for GCC which requires other GNU tools (such as

GAS or the GNU linker) instead of the standard system tools, install the required tools
in the build directory under the names ‘as’, ‘ld’ or whatever is appropriate.
Alternatively, you can do subsequent compilation using a value of the PATH environment
variable such that the necessary GNU tools come before the standard system tools.

2. Specify the host, build and target machine configurations. You do this when you run
the ‘configure’ script.
The build machine is the system which you are using, the host machine is the system
where you want to run the resulting compiler (normally the build machine), and the
target machine is the system for which you want the compiler to generate code.
If you are building a compiler to produce code for the machine it runs on (a native
compiler), you normally do not need to specify any operands to ‘configure’; it will
try to guess the type of machine you are on and use that as the build, host and target
machines. So you don’t need to specify a configuration when building a native compiler
unless ‘configure’ cannot figure out what your configuration is or guesses wrong.
In those cases, specify the build machine’s configuration name with the ‘--host’ option;
the host and target will default to be the same as the host machine.
Here is an example:

./configure --host=sparc-sun-sunos4.1

A configuration name may be canonical or it may be more or less abbreviated.
A canonical configuration name has three parts, separated by dashes. It looks like this:
‘cpu-company-system ’. (The three parts may themselves contain dashes; ‘configure’
can figure out which dashes serve which purpose.) For example, ‘m68k-sun-sunos4.1’
specifies a Sun 3.
You can also replace parts of the configuration by nicknames or aliases. For example,
‘sun3’ stands for ‘m68k-sun’, so ‘sun3-sunos4.1’ is another way to specify a Sun 3.
You can specify a version number after any of the system types, and some of the CPU
types. In most cases, the version is irrelevant, and will be ignored. So you might as
well specify the version if you know it.
See Section 10.1 [Configurations], page 71, for a list of supported configuration names
and notes on many of the configurations. You should check the notes in that section
before proceeding any further with the installation of GCC.

10.1 Configurations Supported by GCC

Here are the possible CPU types:
1750a, a29k, alpha, arm, avr, cn, clipper, dsp16xx, elxsi, fr30, h8300, hppa1.0,
hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, ip2k, m32r, m68000,

72 Installing GCC

m68k, m6811, m6812, m88k, mcore, mips, mipsel, mips64, mips64el, mn10200,
mn10300, ns32k, pdp11, powerpc, powerpcle, romp, rs6000, sh, sparc, sparclite,
sparc64, v850, vax, we32k.

Here are the recognized company names. As you can see, customary abbreviations are
used rather than the longer official names.

acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, convex, crds,
dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips,
motorola, ncr, next, ns, omron, plexus, sequent, sgi, sony, sun, tti, unicom, wrs.

The company name is meaningful only to disambiguate when the rest of the information
supplied is insufficient. You can omit it, writing just ‘cpu-system ’, if it is not needed. For
example, ‘vax-ultrix4.2’ is equivalent to ‘vax-dec-ultrix4.2’.

Here is a list of system types:
386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff, ctix, cxux, dgux,
dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix, gnu, linux, linux-gnu, hiux,
hpux, iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs, netbsd, newsos,
nindy, ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv,
udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix.

You can omit the system type; then ‘configure’ guesses the operating system from the
CPU and company.

You can add a version number to the system type; this may or may not make a dif-
ference. For example, you can write ‘bsd4.3’ or ‘bsd4.4’ to distinguish versions of BSD.
In practice, the version number is most needed for ‘sysv3’ and ‘sysv4’, which are often
treated differently.

‘linux-gnu’ is the canonical name for the GNU/Linux target; however GCC will also
accept ‘linux’. The version of the kernel in use is not relevant on these systems. A suffix
such as ‘libc1’ or ‘aout’ distinguishes major versions of the C library; all of the suffixed
versions are obsolete.

If you specify an impossible combination such as ‘i860-dg-vms’, then you may get an
error message from ‘configure’, or it may ignore part of the information and do the best
it can with the rest. ‘configure’ always prints the canonical name for the alternative that
it used. GCC does not support all possible alternatives.

Often a particular model of machine has a name. Many machine names are recognized as
aliases for CPU/company combinations. Thus, the machine name ‘sun3’, mentioned above,
is an alias for ‘m68k-sun’. Sometimes we accept a company name as a machine name, when
the name is popularly used for a particular machine. Here is a table of the known machine
names:

3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cn,
crds, decstation-3100, decstation, delta, encore, fx2800, gmicro, hp7nn, hp8nn,
hp9k2nn, hp9k3nn, hp9k7nn, hp9k8nn, iris4d, iris, isi68, m3230, magnum, mer-
lin, miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax,
powerpc, powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, sun4,
symmetry, tower-32, tower.

Remember that a machine name specifies both the cpu type and the company name. If you
want to install your own homemade configuration files, you can use ‘local’ as the company

Chapter 10: Old installation documentation 73

name to access them. If you use configuration ‘cpu-local’, the configuration name without
the cpu prefix is used to form the configuration file names.

Thus, if you specify ‘m68k-local’, configuration uses files ‘m68k.md’, ‘local.h’, ‘m68k.c’,
‘xm-local.h’, ‘t-local’, and ‘x-local’, all in the directory ‘config/m68k’.

GNU Free Documentation License 75

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

76 Installing GCC

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

GNU Free Documentation License 77

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

78 Installing GCC

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

GNU Free Documentation License 79

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

80 Installing GCC

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

GNU Free Documentation License 81

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

82 Installing GCC

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Installing GCC
	Prerequisites
	Downloading GCC
	Installing GCC: Configuration
	Building
	Building a native compiler
	Building a cross compiler
	Building in parallel
	Building the Ada compiler
	Building with profile feedback

	Installing GCC: Testing
	How can you run the testsuite on selected tests?
	Passing options and running multiple testsuites
	Additional testing for Java Class Libraries
	How to interpret test results
	Submitting test results

	Installing GCC: Final installation
	Installing GCC: Binaries
	Host/target specific installation notes for GCC
	Old installation documentation
	Configurations Supported by GCC

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

