
Contributed by Steven Bosscher (s.bosscher@gcc.gnu.org).

Using GNU Fortran 95

Steven Bosscher

For the 4.0.0 Version*

Published by the Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

Copyright c© 1999-2005 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”
and “Funding Free Software”, the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is included in the section
entitled “GNU Free Documentation License”.
(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

i

Short Contents

Introduction . 1

GNU GENERAL PUBLIC LICENSE . 3

GNU Free Documentation License . 9

Funding Free Software . 17

1 Getting Started. 19

2 GFORTRAN and GCC . 21

3 GFORTRAN and G77 . 23

4 GNU Fortran 95 Command Options. 25

5 Project Status . 33

6 Extensions . 37

7 Intrinsic Procedures . 39

8 Contributing. 57

9 Standards . 59

Index . 61

ii The GNU Fortran 95 Compiler

iii

Table of Contents

Introduction . 1

GNU GENERAL PUBLIC LICENSE 3
Preamble . 3
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION . 4
How to Apply These Terms to Your New Programs 8

GNU Free Documentation License 9
ADDENDUM: How to use this License for your documents 15

Funding Free Software . 17

1 Getting Started. 19

2 GFORTRAN and GCC 21

3 GFORTRAN and G77 . 23

4 GNU Fortran 95 Command Options 25
4.1 Option Summary . 25
4.2 Options Controlling Fortran Dialect . 26
4.3 Options to Request or Suppress Warnings . 27
4.4 Options for Debugging Your Program or GNU Fortran 28
4.5 Options for Directory Search . 28
4.6 Options for Code Generation Conventions . 29
4.7 Environment Variables Affecting GNU Fortran 31

5 Project Status . 33
5.1 Compiler Status . 33
5.2 Library Status . 33
5.3 Proposed Extensions . 34

5.3.1 Compiler extensions: . 34
5.3.2 Environment Options . 35

6 Extensions . 37
6.1 Old-style kind specifications . 37
6.2 Old-style variable initialization . 37

iv The GNU Fortran 95 Compiler

7 Intrinsic Procedures . 39
7.1 Introduction to intrinsic procedures . 39
7.2 ABORT — Abort the program . 39
7.3 ABS — Absolute value . 40
7.4 ACHAR — Character in ASCII collating sequence 40
7.5 ACOS — Arccosine function . 41
7.6 ADJUSTL — Left adjust a string. 41
7.7 ADJUSTR — Right adjust a string . 42
7.8 AIMAG — Imaginary part of complex number 42
7.9 AINT — Imaginary part of complex number 43
7.10 ALL — All values in MASK along DIM are true 43
7.11 ALLOCATED — Status of an allocatable entity 44
7.12 ANINT — Imaginary part of complex number 45
7.13 ANY — Any value in MASK along DIM is true 45
7.14 ASIN — Arcsine function. 46
7.15 ATAN — Arctangent function . 47
7.16 BESJ0 — Bessel function of the first kind of order 0 47
7.17 BESJ1 — Bessel function of the first kind of order 1 48
7.18 BESJN — Bessel function of the first kind. 48
7.19 BESY0 — Bessel function of the second kind of order 0 49
7.20 BESY1 — Bessel function of the second kind of order 1 49
7.21 BESYN — Bessel function of the second kind 50
7.22 COS — Cosine function . 50
7.23 COSH — Hyperbolic cosine function . 51
7.24 ERF — Error function. 51
7.25 ERFC — Error function . 52
7.26 EXP — Exponential function . 52
7.27 LOG — Logarithm function . 53
7.28 LOG10 — Base 10 logarithm function. 53
7.29 SIN — Sine function . 54
7.30 SINH — Hyperbolic sine function . 54
7.31 SQRT — Square-root function . 55
7.32 TAN — Tangent function . 55
7.33 TANH — Hyperbolic tangent function . 56

8 Contributing . 57
8.1 Contributors to GNU Fortran 95 . 57
8.2 Projects . 57

9 Standards . 59

Index . 61

1

Introduction

This manual documents the use of gfortran, the GNU Fortran 95 compiler. You can find
in this manual how to invoke gfortran, as well as its features and incompatibilities.

2 The GNU Fortran 95 Compiler

3

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

4 The GNU Fortran 95 Compiler

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

5

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6 The GNU Fortran 95 Compiler

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

7

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

8 The GNU Fortran 95 Compiler

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

9

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

10 The GNU Fortran 95 Compiler

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

11

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

12 The GNU Fortran 95 Compiler

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

13

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

14 The GNU Fortran 95 Compiler

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

15

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

16 The GNU Fortran 95 Compiler

17

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since
creative accounting and unrelated business decisions can greatly alter what fraction of the
sales price counts as profit. If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright c© 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

18 The GNU Fortran 95 Compiler

Chapter 1: Getting Started 19

1 Getting Started

Gfortran is the GNU Fortran 95 compiler front end, designed initially as a free replacement
for, or alternative to, the unix f95 command; gfortran is command you’ll use to invoke
the compiler.

Gfortran is not yet a fully conformant Fortran 95 compiler. It can generate code for most
constructs and expressions, but work remains to be done. In particular, there are known
deficiencies with ENTRY, NAMELIST, and sophisticated use of MODULES, POINTERS
and DERIVED TYPES. For those whose Fortran codes conform to either the Fortran 77
standard or the GNU Fortran 77 language, we recommend to use g77 from GCC 3.4. We
recommend that distributors continue to provide packages of g77-3.4 until we announce
that gfortran fully replaces g77. The gfortran developers welcome any feedback on user
experience with gfortran at fortran@gcc.gnu.org.

When gfortran is finished, it will do everything you expect from any decent compiler:
• Read a user’s program, stored in a file and containing instructions written in Fortran

77, Fortran 90 or Fortran 95. This file contains source code.
• Translate the user’s program into instructions a computer can carry out more quickly

than it takes to translate the instructions in the first place. The result after compilation
of a program is machine code, code designed to be efficiently translated and processed
by a machine such as your computer. Humans usually aren’t as good writing machine
code as they are at writing Fortran (or C++, Ada, or Java), because is easy to make
tiny mistakes writing machine code.

• Provide the user with information about the reasons why the compiler is unable to
create a binary from the source code. Usually this will be the case if the source code
is flawed. When writing Fortran, it is easy to make big mistakes. The Fortran 90
requires that the compiler can point out mistakes to the user. An incorrect usage of
the language causes an error message.
The compiler will also attempt to diagnose cases where the user’s program contains a
correct usage of the language, but instructs the computer to do something questionable.
This kind of diagnostics message is called a warning message.

• Provide optional information about the translation passes from the source code to
machine code. This can help a user of the compiler to find the cause of certain bugs
which may not be obvious in the source code, but may be more easily found at a lower
level compiler output. It also helps developers to find bugs in the compiler itself.

• Provide information in the generated machine code that can make it easier to find bugs
in the program (using a debugging tool, called a debugger, such as the GNU Debugger
gdb).

• Locate and gather machine code already generated to perform actions requested by
statements in the user’s program. This machine code is organized into modules and is
located and linked to the user program.

Gfortran consists of several components:
• A version of the gcc command (which also might be installed as the system’s cc com-

mand) that also understands and accepts Fortran source code. The gcc command is
the driver program for all the languages in the GNU Compiler Collection (GCC); With

20 The GNU Fortran 95 Compiler

gcc, you can compiler the source code of any language for which a front end is available
in GCC.

• The gfortran command itself, which also might be installed as the system’s f95 com-
mand. gfortran is just another driver program, but specifically for the Fortran 95
compiler only. The difference with gcc is that gfortran will automatically link the
correct libraries to your program.

• A collection of run-time libraries. These libraries contains the machine code needed
to support capabilities of the Fortran language that are not directly provided by the
machine code generated by the gfortran compilation phase, such as intrinsic functions
and subroutines, and routines for interaction with files and the operating system.

• The Fortran compiler itself, (f951). This is the gfortran parser and code generator,
linked to and interfaced with the GCC backend library. f951 “translates” the source
code to assembler code. You would typically not use this program directly; instead,
the gcc or gfortran driver programs will call it for you.

Chapter 2: GFORTRAN and GCC 21

2 GFORTRAN and GCC

GCC used to be the GNU “C” Compiler, but is now known as the GNU Compiler Col-
lection. GCC provides the GNU system with a very versatile compiler middle end (shared
optimization passes), and with back ends (code generators) for many different computer
architectures and operating systems. The code of the middle end and back end are shared
by all compiler front ends that are in the GNU Compiler Collection.

A GCC front end is essentially a source code parser and a pass to generate a representa-
tion of the semantics of the program in the source code in the GCC language independent
intermediate language, called GENERIC.

The parser takes a source file written in a particular computer language, reads and
parses it, and tries to make sure that the source code conforms to the language rules. Once
the correctness of a program has been established, the compiler will build a data structure
known as the Abstract Syntax tree, or just AST or “tree” for short. This data structure
represents the whole program or a subroutine or a function. The “tree” is passed to the
GCC middle end, which will perform optimization passes on it, pass the optimized AST
and generate assembly for the program unit.

Different phases in this translation process can be, and in fact are merged in many
compiler front ends. GNU Fortran 95 has a strict separation between the parser and code
generator.

The goal of the gfortran project is to build a new front end for GCC: A Fortran 95 front
end. In a non-gfortran installation, gcc will not be able to compile Fortran 95 source code
(only the “C” front end has to be compiled if you want to build GCC, all other languages
are optional). If you build GCC with gfortran, gcc will recognize ‘.f/.f90/.f95’ source
files and accepts Fortran 95 specific command line options.

22 The GNU Fortran 95 Compiler

Chapter 3: GFORTRAN and G77 23

3 GFORTRAN and G77

Why do we write a compiler front end from scratch? There’s a fine Fortran 77 compiler
in the GNU Compiler Collection that accepts some features of the Fortran 90 standard as
extensions. Why not start from there and revamp it?

One of the reasons is that Craig Burley, the author of G77, has decided to stop working on
the G77 front end. On Craig explains the reasons for his decision to stop working on G77
(http://world.std.com/~burley/g77-why.html) in one of the pages in his homepage.
Among the reasons is a lack of interest in improvements to g77. Users appear to be quite
satisfied with g77 as it is. While g77 is still being maintained (by Toon Moene), it is unlikely
that sufficient people will be willing to completely rewrite the existing code.

But there are other reasons to start from scratch. Many people, including Craig Burley,
no longer agreed with certain design decisions in the G77 front end. Also, the interface
of g77 to the back end is written in a style which is confusing and not up to date on
recommended practice. In fact, a full rewrite had already been planned for GCC 3.0.

When Craig decided to stop, it just seemed to be a better idea to start a new project
from scratch, because it was expected to be easier to maintain code we develop ourselves
than to do a major overhaul of g77 first, and then build a Fortran 95 compiler out of it.

24 The GNU Fortran 95 Compiler

Chapter 4: GNU Fortran 95 Command Options 25

4 GNU Fortran 95 Command Options

The gfortran command supports all the options supported by the gcc command. Only
options specific to gfortran are documented here.

Gfortran is not yet a fully conformant Fortran 95 compiler. It can generate code for most
constructs and expressions, but work remains to be done. In particular, there are known
deficiencies with ENTRY, NAMELIST, and sophisticated use of MODULES, POINTERS
and DERIVED TYPES. For those whose Fortran codes conform to either the Fortran 77
standard or the GNU Fortran 77 language, we recommend to use g77 from GCC 3.4. We
recommend that distributors continue to provide packages of g77-3.4 until we announce
that gfortran fully replaces g77. The gfortran developers welcome any feedback on user
experience with gfortran at fortran@gcc.gnu.org.

See section “GCC Command Options” in Using the GNU Compiler Collection (GCC),
for information on the non-Fortran-specific aspects of the gcc command (and, therefore,
the gfortran command).

All gcc and gfortran options are accepted both by gfortran and by gcc (as well as
any other drivers built at the same time, such as g++), since adding gfortran to the gcc
distribution enables acceptance of gfortran options by all of the relevant drivers.

In some cases, options have positive and negative forms; the negative form of ‘-ffoo’
would be ‘-fno-foo’. This manual documents only one of these two forms, whichever one
is not the default.

4.1 Option Summary

Here is a summary of all the options specific to GNU Fortran, grouped by type. Explanations
are in the following sections.

Fortran Language Options
See Section 4.2 [Options Controlling Fortran Dialect], page 26.

-ffree-form -fno-fixed-form

-fdollar-ok -fimplicit-none -fmax-identifier-length

-std=std -ffixed-line-length-n -ffixed-line-length-none

-fdefault-double-8 -fdefault-integer-8 -fdefault-real-8

Warning Options
See Section 4.3 [Options to Request or Suppress Warnings], page 27.

-fsyntax-only -pedantic -pedantic-errors

-w -Wall -Waliasing -Wconversion

-Wimplicit-interface -Wnonstd-intrinsics -Wsurprising -Wunderflow

-Wunused-labels -Wline-truncation

-Werror -W

Debugging Options
See Section 4.4 [Options for Debugging Your Program or GCC], page 28.

-fdump-parse-tree

Directory Options
See Section 4.5 [Options for Directory Search], page 28.

-Idir -Mdir

Code Generation Options
See Section 4.6 [Options for Code Generation Conventions], page 29.

26 The GNU Fortran 95 Compiler

-fno-underscoring -fno-second-underscore

-fbounds-check -fmax-stack-var-size=n

-fpackderived -frepack-arrays

4.2 Options Controlling Fortran Dialect

The following options control the dialect of Fortran that the compiler accepts:

-ffree-form
-ffixed-form

Specify the layout used by the the source file. The free form layout was in-
troduced in Fortran 90. Fixed form was traditionally used in older Fortran
programs.

-fdefault-double-8
Set the "DOUBLE PRECISION" type to an 8 byte wide.

-fdefault-integer-8
Set the default integer and logical types to an 8 byte wide type. Do nothing if
this is already the default.

-fdefault-real-8
Set the default real type to an 8 byte wide type. Do nothing if this is already
the default.

-fdollar-ok
Allow ‘$’ as a valid character in a symbol name.

-ffixed-line-length-n
Set column after which characters are ignored in typical fixed-form lines in the
source file, and through which spaces are assumed (as if padded to that length)
after the ends of short fixed-form lines.

Popular values for n include 72 (the standard and the default), 80 (card im-
age), and 132 (corresponds to “extended-source” options in some popular com-
pilers). n may be ‘none’, meaning that the entire line is meaningful and
that continued character constants never have implicit spaces appended to
them to fill out the line. ‘-ffixed-line-length-0’ means the same thing
as ‘-ffixed-line-length-none’.

-fmax-identifier-length=n
Specify the maximum allowed identifier length. Typical values are 31 (Fortran
95) and 63 (Fortran 200x).

-fimplicit-none
Specify that no implicit typing is allowed, unless overridden by explicit
‘IMPLICIT’ statements. This is the equivalent of adding ‘implicit none’ to
the start of every procedure.

-std=std Conform to the specified standard. Allowed values for std are ‘gnu’ and ‘f95’.

Chapter 4: GNU Fortran 95 Command Options 27

4.3 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erro-
neous but which are risky or suggest there might have been an error.

You can request many specific warnings with options beginning ‘-W’, for example
‘-Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘-Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

These options control the amount and kinds of warnings produced by GNU Fortran:

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-pedantic
Issue warnings for uses of extensions to FORTRAN 95. ‘-pedantic’ also applies
to C-language constructs where they occur in GNU Fortran source files, such
as use of ‘\e’ in a character constant within a directive like ‘#include’.
Valid FORTRAN 95 programs should compile properly with or without this
option. However, without this option, certain GNU extensions and traditional
Fortran features are supported as well. With this option, many of them are
rejected.
Some users try to use ‘-pedantic’ to check programs for conformance. They
soon find that it does not do quite what they want—it finds some nonstandard
practices, but not all. However, improvements to gfortran in this area are
welcome.
This should be used in conjunction with -std=std.

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-w Inhibit all warning messages.

-Wall Enables commonly used warning options that which pertain to usage
that we recommend avoiding and that we believe is easy to avoid. This
currently includes ‘-Wunused-labels’, ‘-Waliasing’, ‘-Wsurprising’,
‘-Wnonstd-intrinsic’ and ‘-Wline-truncation’.

-Waliasing
Warn about possible aliasing of dummy arguments. The following example will
trigger the warning as it would be illegal to bar to modify either parameter.

INTEGER A

CALL BAR(A,A)

-Wconversion
Warn about implicit conversions between different types.

-Wimplicit-interface
Warn about when procedure are called without an explicit interface. Note this
only checks that an explicit interface is present. It does not check that the
declared interfaces are consistent across program units.

28 The GNU Fortran 95 Compiler

-Wnonstd-intrinsic
Warn if the user tries to use an intrinsic that does not belong to the standard
the user has chosen via the -std option.

-Wsurprising
Produce a warning when “suspicious” code constructs are encountered. While
technically legal these usually indicate that an error has been made.
This currently produces a warning under the following circumstances:
• An INTEGER SELECT construct has a CASE that can never be matched

as its lower value is greater than its upper value.
• A LOGICAL SELECT construct has three CASE statements.

-Wunderflow
Produce a warning when numerical constant expressions are encountered, which
yield an UNDERFLOW during compilation.

-Wunused-labels
Warn whenever a label is defined but never referenced.

-Werror Turns all warnings into errors.

-W Turns on “extra warnings” and, if optimization is specified via ‘-O’, the
‘-Wuninitialized’ option. (This might change in future versions of gfortran

See section “Options to Request or Suppress Warnings” in Using the GNU Compiler
Collection (GCC), for information on more options offered by the GBE shared by gfortran,
gcc and other GNU compilers.

Some of these have no effect when compiling programs written in Fortran.

4.4 Options for Debugging Your Program or GNU Fortran

GNU Fortran has various special options that are used for debugging either your program
or gfortran

-fdump-parse-tree
Output the internal parse tree before starting code generation. Only really
useful for debugging gfortran itself.

See section “Options for Debugging Your Program or GCC” in Using the GNU Compiler
Collection (GCC), for more information on debugging options.

4.5 Options for Directory Search

There options affect how affect how gfortran searches for files specified via the INCLUDE
directive, and where it searches for previously compiled modules.

It also affects the search paths used by cpp when used to preprocess Fortran source.

-Idir These affect interpretation of the INCLUDE directive (as well as of the #include
directive of the cpp preprocessor).
Also note that the general behavior of ‘-I’ and INCLUDE is pretty much the
same as of ‘-I’ with #include in the cpp preprocessor, with regard to looking
for ‘header.gcc’ files and other such things.

Chapter 4: GNU Fortran 95 Command Options 29

This path is also used to search for ‘.mod’ files when previously compiled mod-
ules are required by a USE statement.
See section “Options for Directory Search” in Using the GNU Compiler Collec-
tion (GCC), for information on the ‘-I’ option.

-Mdir

-Jdir This option specifies where to put ‘.mod’ files for compiled modules. It is also
added to the list of directories to searched by an USE statement.
The default is the current directory.
‘-J’ is an alias for ‘-M’ to avoid conflicts with existing GCC options.

4.6 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code genera-
tion.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would
be ‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the
default. You can figure out the other form by either removing ‘no-’ or adding it.

-fno-underscoring
Do not transform names of entities specified in the Fortran source file by ap-
pending underscores to them.
With ‘-funderscoring’ in effect, gfortran appends two underscores to names
with underscores and one underscore to external names with no underscores.
(gfortran also appends two underscores to internal names with underscores to
avoid naming collisions with external names. The ‘-fno-second-underscore’
option disables appending of the second underscore in all cases.)
This is done to ensure compatibility with code produced by many UNIX Fortran
compilers, including f2c which perform the same transformations.
Use of ‘-fno-underscoring’ is not recommended unless you are experimenting
with issues such as integration of (GNU) Fortran into existing system environ-
ments (vis-a-vis existing libraries, tools, and so on).
For example, with ‘-funderscoring’, and assuming other defaults like
‘-fcase-lower’ and that ‘j()’ and ‘max_count()’ are external functions while
‘my_var’ and ‘lvar’ are local variables, a statement like

I = J() + MAX_COUNT (MY_VAR, LVAR)

is implemented as something akin to:
i = j_() + max_count__(&my_var__, &lvar);

With ‘-fno-underscoring’, the same statement is implemented as:
i = j() + max_count(&my_var, &lvar);

Use of ‘-fno-underscoring’ allows direct specification of user-defined names
while debugging and when interfacing gfortran code with other languages.
Note that just because the names match does not mean that the interface imple-
mented by gfortran for an external name matches the interface implemented
by some other language for that same name. That is, getting code produced by

30 The GNU Fortran 95 Compiler

gfortran to link to code produced by some other compiler using this or any
other method can be only a small part of the overall solution—getting the code
generated by both compilers to agree on issues other than naming can require
significant effort, and, unlike naming disagreements, linkers normally cannot
detect disagreements in these other areas.

Also, note that with ‘-fno-underscoring’, the lack of appended underscores in-
troduces the very real possibility that a user-defined external name will conflict
with a name in a system library, which could make finding unresolved-reference
bugs quite difficult in some cases—they might occur at program run time, and
show up only as buggy behavior at run time.

In future versions of gfortran we hope to improve naming and linking issues so
that debugging always involves using the names as they appear in the source,
even if the names as seen by the linker are mangled to prevent accidental linking
between procedures with incompatible interfaces.

-fno-second-underscore
Do not append a second underscore to names of entities specified in the Fortran
source file.

This option has no effect if ‘-fno-underscoring’ is in effect.

Otherwise, with this option, an external name such as ‘MAX_COUNT’ is imple-
mented as a reference to the link-time external symbol ‘max_count_’, instead
of ‘max_count__’.

-fbounds-check
Enable generation of run-time checks for array subscripts and against the de-
clared minimum and maximum values. It also checks array indices for assumed
and deferred shape arrays against the actual allocated bounds.

In the future this may also include other forms of checking, eg. checking sub-
string references.

-fmax-stack-var-size=n
This option specifies the size in bytes of the largest array that will be put on
the stack.

This option currently only affects local arrays declared with constant bounds,
and may not apply to all character variables. Future versions of gfortran may
improve this behavior.

The default value for n is 32768.

-fpackderived
This option tells gfortran to pack derived type members as closely as possible.
Code compiled with this option is likely to be incompatible with code compiled
without this option, and may execute slower.

-frepack-arrays
In some circumstances gfortran may pass assumed shape array sections via a
descriptor describing a discontiguous area of memory. This option adds code
to the function prologue to repack the data into a contiguous block at runtime.

Chapter 4: GNU Fortran 95 Command Options 31

This should result in faster accesses to the array. However it can introduce
significant overhead to the function call, especially when the passed data is
discontiguous.

See section “Options for Code Generation Conventions” in Using the GNU Compiler
Collection (GCC), for information on more options offered by the GBE shared by gfortran
gcc and other GNU compilers.

4.7 Environment Variables Affecting GNU Fortran

GNU Fortran 95 currently does not make use of any environment variables to control its
operation above and beyond those that affect the operation of gcc.

See section “Environment Variables Affecting GCC” in Using the GNU Compiler Col-
lection (GCC), for information on environment variables.

32 The GNU Fortran 95 Compiler

Chapter 5: Project Status 33

5 Project Status

As soon as gfortran can parse all of the statements correctly, it will be in the
“larva” state. When we generate code, the “puppa” state. When gfortran is
done, we’ll see if it will be a beautiful butterfly, or just a big bug....
–Andy Vaught, April 2000

The start of the GNU Fortran 95 project was announced on the GCC homepage in March
18, 2000 (even though Andy had already been working on it for a while, or course).

Gfortran is currently reaching the stage where is is able to compile real world programs.
However it is still under development and has many rough edges.

5.1 Compiler Status

Front end This is the part of gfortran which parses a source file, verifies that it is valid
Fortran 95, performs compile time replacement of constants (PARAMETER
variables) and reads and generate module files. This is almost complete. Every
Fortran 95 source should be accepted, and most none-Fortran 95 source should
be rejected. If you find a source file where this is not true, please tell us. You
can use the -fsyntax-only switch to make gfortran quit after running the front
end, effectively reducing it to a syntax checker.

Middle end interface
These are the parts of gfortran that take the parse tree generated by the front
end and translate it to the GENERIC form required by the GCC back end.
Work is ongoing in these parts of gfortran, but a large part has already been
completed.

5.2 Library Status

Some intrinsic functions map directly to library functions, and in most cases the name of
the library function used depends on the type of the arguments. For some intrinsics we
generate inline code, and for others, such as sin, cos and sqrt, we rely on the backend to
use special instructions in the floating point unit of the CPU if available, or to fall back to
a call to libm if these are not available.

Implementation of some non-elemental intrinsic functions (eg. DOT PRODUCT, AV-
ERAGE) is not yet optimal. This is hard because we have to make decisions whether to use
inline code (good for small arrays as no function call overhead occurs) or generate function
calls (good for large arrays as it allows use of hand-optimized assembly routines, SIMD
instructions, etc.)

The IO library is still under development. The following features should be usable for
real programs:
− List directed
− Unformatted sequential

Usable with bugs:
− Formatted sequential (’T’ edit descriptor, and others)
− Namelist (can read a namelist that it writes, but not free-form)

34 The GNU Fortran 95 Compiler

Not recommended:
− Unformatted direct access
− Formatted direct access

Many Fortran programs only use a small subset of the available IO capabilities, so your
mileage may vary.

5.3 Proposed Extensions

Here’s a list of proposed extensions for gfortran, in no particular order. Most of these are
necessary to be fully compatible with existing Fortran compilers, but they are not part of
the official J3 Fortran 95 standard.

5.3.1 Compiler extensions:

• Flag for defining the kind number for default logicals.
• User-specified alignment rules for structures.
• Flag to generate a Makefile info.
• Automatically extend single precision constants to double.
• Cray pointers (this was high on the g77 wishlist).
• Compile code that conserves memory by dynamically allocating common and module

storage either on stack or heap.
• Flag to cause the compiler to distinguish between upper and lower case names. The

Fortran 95 standard does not distinguish them.
• Compile switch for changing the interpretation of a backslash from a character to “C”-

style escape characters.
• Compile flag to generate code for array conformance checking (suggest -CC).
• User control of symbol names (underscores, etc).
• Compile setting for maximum size of stack frame size before spilling parts to static or

heap.
• Flag to force local variables into static space.
• Flag to force local variables onto stack.
• Flag to compile lines beginning with “D”.
• Flag to ignore lines beginning with “D”.
• Flag for maximum errors before ending compile.
• Generate code to check for null pointer dereferences – prints locus of dereference instead

of segfaulting. There was some discussion about this option in the g95 development
mailing list.

• Allow setting default unit number.
• Option to initialize of otherwise uninitialized integer and floating point variables.
• Support for OpenMP directives. This also requires support from the runtime library

and the rest of the compiler.
• Support for Fortran 200x. This includes several new features including floating point

exceptions, extended use of allocatable arrays, C interoperability, Parameterizer data
types and function pointers.

Chapter 5: Project Status 35

5.3.2 Environment Options

• Pluggable library modules for random numbers, linear algebra. LA should use BLAS
calling conventions.

• Environment variables controlling actions on arithmetic exceptions like overflow, un-
derflow, precision loss – Generate NaN, abort, default. action.

• Set precision for fp units that support it (i387).
• Variables for setting fp rounding mode.
• Support old style namelists ending in $end or &end.
• Variable to fill uninitialized variables with a user-defined bit pattern.
• Environment variable controlling filename that is opened for that unit number.
• Environment variable to clear/trash memory being freed.
• Environment variable to control tracing of allocations and frees.
• Environment variable to display allocated memory at normal program end.
• Environment variable for filename for * IO-unit.
• Environment variable for temporary file directory.
• Environment variable forcing standard output to be line buffered (unix).
• Variable for swapping endianness during unformatted read.
• Variable for swapping Endianness during unformatted write.

36 The GNU Fortran 95 Compiler

Chapter 6: Extensions 37

6 Extensions

gfortran implements a number of extensions over standard Fortran. This chapter contains
information on their syntax and meaning.

6.1 Old-style kind specifications
gfortran allows old-style kind specifications in declarations. These look like:

TYPESPEC*k x,y,z

where TYPESPEC is a basic type, and where k is a valid kind number for that type. The
statement then declares x, y and z to be of type TYPESPEC with kind k. In other words, it
is equivalent to the standard conforming declaration

TYPESPEC(k) x,y,z

6.2 Old-style variable initialization
gfortran allows old-style initialization of variables of the form:

INTEGER*4 i/1/,j/2/

REAL*8 x(2,2) /3*0.,1./

These are only allowed in declarations without double colons (::), as these were in-
troduced in Fortran 90 which also introduced a new syntax for variable initializations.
The syntax for the individual initializers is as for the DATA statement, but unlike in a DATA
statement, an initializer only applies to the variable immediately preceding. In other words,
something like INTEGER I,J/2,3/ is not valid.

Examples of standard conforming code equivalent to the above example, are:
! Fortran 90

INTEGER(4) :: i = 1, j = 2

REAL(8) :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))

! Fortran 77

INTEGER i, j

DOUBLE PRECISION x(2,2)

DATA i,j,x /1,2,3*0.,1./

38 The GNU Fortran 95 Compiler

Chapter 7: Intrinsic Procedures 39

7 Intrinsic Procedures

This portion of the document is incomplete and undergoing massive expansion and editing.
All contributions and corrections are strongly encouraged.

7.1 Introduction to intrinsic procedures

Gfortran provides a rich set of intrinsic procedures that includes all the intrinsic procedures
required by the Fortran 95 standard, a set of intrinsic procedures for backwards compati-
bility with Gnu Fortran 77 (i.e., g77), and a small selection of intrinsic procedures from the
Fortran 2003 standard. Any description here, which conflicts with a description in either
the Fortran 95 standard or the Fortran 2003 standard, is unintentional and the standard(s)
should be considered authoritative.

The enumeration of the KIND type parameter is processor defined in the Fortran
95 standard. Gfortran defines the default integer type and default real type by
INTEGER(KIND=4) and REAL(KIND=4), respectively. The standard mandates that both data
types shall have another kind, which have more precision. On typical target architectures
supports by gfortran, this kind type parameter is KIND=8. Hence, REAL(KIND=8) and
DOUBLE PRECISION are equivalent. In the description of generic intrinsic procedures,
the kind type parameter will be specified by KIND=*, and in the description of specific
names for an intrinsic procedure the kind type parameter will be explicitly given (e.g.,
REAL(KIND=4) or REAL(KIND=8)). Finally, for brevity the optional KIND= syntax will be
omitted.

Many of the intrinsics procedures take one or more optional arguments. This document
follows the convention used in the Fortran 95 standard, and denotes such arguments by
square brackets.

Gfortran offers the ‘-std=f95’ and ‘-std=gnu’ options, which can be used to restrict the
set of intrinsic procedures to a given standard. By default, gfortran sets the ‘-std=gnu’
option, and so all intrinsic procedures describe here are accepted. There is one caveat. For
a select group of intrinsic procedures, g77 implemented both a function and a subroutine.
Both classes have been implemented in gfortran for backwards compatibility with g77.
It is noted here that these functions and subroutines cannot be intermixed in a given
subprogram. In the descriptions that follow, the applicable option(s) is noted.

7.2 ABORT — Abort the program

Description:
ABORT causes immediate termination of the program. On operating systems
that support a core dump, ABORT will produce a core dump, which is suitable
for debugging purposes.

Option: gnu

Type: non-elemental subroutine

Syntax : CALL ABORT

Return value:
Does not return.

40 The GNU Fortran 95 Compiler

Example:
program test_abort

integer :: i = 1, j = 2

if (i /= j) call abort

end program test_abort

7.3 ABS — Absolute value

Description:
ABS(X) computes the absolute value of X.

Option: f95, gnu

Type: elemental function

Syntax : X = ABS(X)

Arguments:
X The type of the argument shall be an INTEGER(*), REAL(*), or

COMPLEX(*).

Return value:
The return value is of the same type and kind as the argument except the return
value is REAL(*) for a COMPLEX(*) argument.

Example:
program test_abs

integer :: i = -1

real :: x = -1.e0

complex :: z = (-1.e0,0.e0)

i = abs(i)

x = abs(x)

x = abs(z)

end program test_abs

Specific names:
Name Argument Return type Option
CABS(Z) COMPLEX(4) Z REAL(4) f95, gnu
DABS(X) REAL(8) X REAL(8) f95, gnu
IABS(I) INTEGER(4) I INTEGER(4) f95, gnu
ZABS(Z) COMPLEX(8) Z COMPLEX(8) gnu
CDABS(Z) COMPLEX(8) Z COMPLEX(8) gnu

7.4 ACHAR — Character in ASCII collating sequence

Description:
ACHAR(I) returns the character located at position I in the ASCII collating
sequence.

Option: f95, gnu

Type: elemental function

Syntax : C = ACHAR(I)

Chapter 7: Intrinsic Procedures 41

Arguments:
I The type shall be an INTEGER(*).

Return value:
The return value is of type CHARACTER with a length of one. The kind type
parameter is the same as KIND(’A’).

Example:
program test_achar

character c

c = achar(32)

end program test_achar

7.5 ACOS — Arccosine function

Description:
ACOS(X) computes the arccosine of its X.

Option: f95, gnu

Type: elemental function

Syntax : X = ACOS(X)

Arguments:
X The type shall be an REAL(*), and a magnitude that is less than one.

Return value:
The return value is of type REAL(*) and it lies in the range 0 ≤ arccos(x) ≤ π.
The kind type parameter is the same as X.

Example:
program test_acos

real(8) :: x = 0.866_8

x = achar(x)

end program test_acos

Specific names:
Name Argument Return type Option
DACOS(X) REAL(8) X REAL(8) f95, gnu

7.6 ADJUSTL — Left adjust a string

Description:
ADJUSTL(STR) will left adjust a string by removing leading spaces. Spaces are
inserted at the end of the string as needed.

Option: f95, gnu

Type: elemental function

Syntax : STR = ADJUSTL(STR)

Arguments:
STR The type shall be CHARACTER.

42 The GNU Fortran 95 Compiler

Return value:
The return value is of type CHARACTER where leading spaces are removed and
the same number of spaces are inserted on the end of STR.

Example:
program test_adjustl

character(len=20) :: str = ’ gfortran’

str = adjustl(str)

print *, str

end program test_adjustl

7.7 ADJUSTR — Right adjust a string

Description:
ADJUSTR(STR) will right adjust a string by removing trailing spaces. Spaces are
inserted at the start of the string as needed.

Option: f95, gnu

Type: elemental function

Syntax : STR = ADJUSTR(STR)

Arguments:
STR The type shall be CHARACTER.

Return value:
The return value is of type CHARACTER where trailing spaces are removed and
the same number of spaces are inserted at the start of STR.

Example:
program test_adjustr

character(len=20) :: str = ’gfortran’

str = adjustr(str)

print *, str

end program test_adjustr

7.8 AIMAG — Imaginary part of complex number

Description:
AIMAG(Z) yields the imaginary part of complex argument Z.

Option: f95, gnu

Type: elemental function

Syntax : X = AIMAG(Z)

Arguments:
Z The type of the argument shall be COMPLEX(*).

Return value:
The return value is of type real with the kind type parameter of the argument.

Example:

Chapter 7: Intrinsic Procedures 43

program test_aimag

complex(4) z4

complex(8) z8

z4 = cmplx(1.e0_4, 0.e0_4)

z8 = cmplx(0.e0_8, 1.e0_8)

print *, aimag(z4), dimag(z8)

end program test_aimag

Specific names:
Name Argument Return type Option
DIMAG(Z) COMPLEX(8) Z REAL(8) f95, gnu

7.9 AINT — Imaginary part of complex number

Description:
AINT(X [, KIND]) truncates its argument to a whole number.

Option: f95, gnu

Type: elemental function

Syntax : X = AINT(X)
X = AINT(X, KIND)

Arguments:
X The type of the argument shall be REAL(*).
KIND (Optional) KIND shall be a scalar integer initialization expression.

Return value:
The return value is of type real with the kind type parameter of the argument if
the optional KIND is absence; otherwise, the kind type parameter will be given
by KIND. If the magnitude of X is less than one, then AINT(X) returns zero. If
the magnitude is equal to or greater than one, then it returns the largest whole
number that does not exceed its magnitude. The sign is the same as the sign
of X.

Example:
program test_aint

real(4) x4

real(8) x8

x4 = 1.234E0_4

x8 = 4.321_8

print *, aint(x4), dint(x8)

x8 = aint(x4,8)

end program test_aint

Specific names:
Name Argument Return type Option
DINT(X) REAL(8) X REAL(8) f95, gnu

7.10 ALL — All values in MASK along DIM are true

Description:
ALL(MASK [, DIM]) determines if all the values are true in MASK in the array
along dimension DIM.

44 The GNU Fortran 95 Compiler

Option: f95, gnu

Type: transformational function

Syntax : L = ALL(MASK)
L = ALL(MASK, DIM)

Arguments:
MASK The type of the argument shall be LOGICAL(*) and it shall not be

scalar.
DIM (Optional) DIM shall be a scalar integer with a value that lies between

one and the rank of MASK.

Return value:
ALL(MASK) returns a scalar value of type LOGICAL(*) where the kind type
parameter is the same as the kind type parameter of MASK. If DIM is present,
then ALL(MASK, DIM) returns an array with the rank of MASK minus 1. The
shape is determined from the shape of MASK where the DIM dimension is
elided.

(A) ALL(MASK) is true if all elements of MASK are true. It also is true
if MASK has zero size; otherwise, it is false.

(B) If the rank of MASK is one, then ALL(MASK,DIM) is equivalent to
ALL(MASK). If the rank is greater than one, then ALL(MASK,DIM)
is determined by applying ALL to the array sections.

Example:
program test_all

logical l

l = all((/.true., .true., .true./))

print *, l

call section

contains

subroutine section

integer a(2,3), b(2,3)

a = 1

b = 1

b(2,2) = 2

print *, all(a .eq. b, 1)

print *, all(a .eq. b, 2)

end subroutine section

end program test_all

7.11 ALLOCATED — Status of an allocatable entity

Description:
ALLOCATED(X) checks the status of wether X is allocated.

Option: f95, gnu

Type: inquiry function

Syntax : L = ALLOCATED(X)

Arguments:
X The argument shall be an ALLOCATABLE array.

Chapter 7: Intrinsic Procedures 45

Return value:
The return value is a scalar LOGICAL with the default logical kind type pa-
rameter. If X is allocated, ALLOCATED(X) is .TRUE.; otherwise, it returns the
.TRUE.

Example:
program test_allocated

integer :: i = 4

real(4), allocatable :: x(:)

if (allocated(x) .eqv. .false.) allocate(x(i)

end program test_allocated

7.12 ANINT — Imaginary part of complex number

Description:
ANINT(X [, KIND]) rounds its argument to the nearest whole number.

Option: f95, gnu

Type: elemental function

Syntax : X = ANINT(X)
X = ANINT(X, KIND)

Arguments:
X The type of the argument shall be REAL(*).
KIND (Optional) KIND shall be a scalar integer initialization expression.

Return value:
The return value is of type real with the kind type parameter of the argument
if the optional KIND is absence; otherwise, the kind type parameter will be
given by KIND. If X is greater than zero, then ANINT(X) returns AINT(X+0.5).
If X is less than or equal to zero, then return AINT(X-0.5).

Example:
program test_anint

real(4) x4

real(8) x8

x4 = 1.234E0_4

x8 = 4.321_8

print *, anint(x4), dnint(x8)

x8 = anint(x4,8)

end program test_anint

Specific names:
Name Argument Return type Option
DNINT(X) REAL(8) X REAL(8) f95, gnu

7.13 ANY — Any value in MASK along DIM is true

Description:
ANY(MASK [, DIM]) determines if any of the values is true in MASK in the
array along dimension DIM.

Option: f95, gnu

46 The GNU Fortran 95 Compiler

Type: transformational function

Syntax : L = ANY(MASK)
L = ANY(MASK, DIM)

Arguments:
MASK The type of the argument shall be LOGICAL(*) and it shall not be

scalar.
DIM (Optional) DIM shall be a scalar integer with a value that lies between

one and the rank of MASK.

Return value:
ANY(MASK) returns a scalar value of type LOGICAL(*) where the kind type
parameter is the same as the kind type parameter of MASK. If DIM is present,
then ANY(MASK, DIM) returns an array with the rank of MASK minus 1. The
shape is determined from the shape of MASK where the DIM dimension is
elided.

(A) ANY(MASK) is true if any element of MASK is true; otherwise, it is
false. It also is false if MASK has zero size.

(B) If the rank of MASK is one, then ANY(MASK,DIM) is equivalent to
ANY(MASK). If the rank is greater than one, then ANY(MASK,DIM)
is determined by applying ANY to the array sections.

Example:
program test_any

logical l

l = any((/.true., .true., .true./))

print *, l

call section

contains

subroutine section

integer a(2,3), b(2,3)

a = 1

b = 1

b(2,2) = 2

print *, any(a .eq. b, 1)

print *, any(a .eq. b, 2)

end subroutine section

end program test_any

7.14 ASIN — Arcsine function

Description:
ASIN(X) computes the arcsine of its X.

Option: f95, gnu

Type: elemental function

Syntax : X = ASIN(X)

Arguments:
X The type shall be an REAL(*), and a magnitude that is less than one.

Chapter 7: Intrinsic Procedures 47

Return value:
The return value is of type REAL(*) and it lies in the range π/2 ≤ arccos(x) ≤
π/2. The kind type parameter is the same as X.

Example:
program test_asin

real(8) :: x = 0.866_8

x = asin(x)

end program test_asin

Specific names:
Name Argument Return type Option
DASIN(X) REAL(8) X REAL(8) f95, gnu

7.15 ATAN — Arctangent function

Description:
ATAN(X) computes the arctangent of X.

Option: f95, gnu

Type: elemental function

Syntax : X = ATAN(X)

Arguments:
X The type shall be an REAL(*).

Return value:
The return value is of type REAL(*) and it lies in the range −π/2 ≤ arcsin(x) ≤
π/2.

Example:
program test_atan

real(8) :: x = 2.866_8

x = atan(x)

end program test_atan

Specific names:
Name Argument Return type Option
DATAN(X) REAL(8) X REAL(8) f95, gnu

7.16 BESJ0 — Bessel function of the first kind of order 0

Description:
BESJ0(X) computes the Bessel function of the first kind of order 0 of X.

Option: gnu

Type: elemental function

Syntax : X = BESJ0(X)

Arguments:
X The type shall be an REAL(*).

48 The GNU Fortran 95 Compiler

Return value:
The return value is of type REAL(*) and it lies in the range −0.4027... ≤
Bessel(0, x) ≤ 1.

Example:
program test_besj0

real(8) :: x = 0.0_8

x = besj0(x)

end program test_besj0

Specific names:
Name Argument Return type Option
DBESJ0(X) REAL(8) X REAL(8) gnu

7.17 BESJ1 — Bessel function of the first kind of order 1

Description:
BESJ1(X) computes the Bessel function of the first kind of order 1 of X.

Option: gnu

Type: elemental function

Syntax : X = BESJ1(X)

Arguments:
X The type shall be an REAL(*).

Return value:
The return value is of type REAL(*) and it lies in the range −0.5818... ≤
Bessel(0, x) ≤ 0.5818.

Example:
program test_besj1

real(8) :: x = 1.0_8

x = besj1(x)

end program test_besj1

Specific names:
Name Argument Return type Option
DBESJ1(X) REAL(8) X REAL(8) gnu

7.18 BESJN — Bessel function of the first kind

Description:
BESJN(N, X) computes the Bessel function of the first kind of order N of X.

Option: gnu

Type: elemental function

Syntax : Y = BESJN(N, X)

Arguments:
N The type shall be an INTEGER(*).
X The type shall be an REAL(*).

Chapter 7: Intrinsic Procedures 49

Return value:
The return value is of type REAL(*).

Example:
program test_besjn

real(8) :: x = 1.0_8

x = besjn(5,x)

end program test_besjn

Specific names:
Name Argument Return type Option
DBESJN(X) REAL(8) X REAL(8) gnu

7.19 BESY0 — Bessel function of the second kind of order 0

Description:
BESY0(X) computes the Bessel function of the second kind of order 0 of X.

Option: gnu

Type: elemental function

Syntax : X = BESY0(X)

Arguments:
X The type shall be an REAL(*).

Return value:
The return value is of type REAL(*).

Example:
program test_besy0

real(8) :: x = 0.0_8

x = besy0(x)

end program test_besy0

Specific names:
Name Argument Return type Option
DBESY0(X) REAL(8) X REAL(8) gnu

7.20 BESY1 — Bessel function of the second kind of order 1

Description:
BESY1(X) computes the Bessel function of the second kind of order 1 of X.

Option: gnu

Type: elemental function

Syntax : X = BESY1(X)

Arguments:
X The type shall be an REAL(*).

Return value:
The return value is of type REAL(*).

Example:

50 The GNU Fortran 95 Compiler

program test_besy1

real(8) :: x = 1.0_8

x = besy1(x)

end program test_besy1

Specific names:
Name Argument Return type Option
DBESY1(X) REAL(8) X REAL(8) gnu

7.21 BESYN — Bessel function of the second kind

Description:
BESYN(N, X) computes the Bessel function of the second kind of order N of X.

Option: gnu

Type: elemental function

Syntax : Y = BESYN(N, X)

Arguments:
N The type shall be an INTEGER(*).
X The type shall be an REAL(*).

Return value:
The return value is of type REAL(*).

Example:
program test_besyn

real(8) :: x = 1.0_8

x = besyn(5,x)

end program test_besyn

Specific names:
Name Argument Return type Option
DBESYN(X) REAL(8) X REAL(8) gnu

7.22 COS — Cosine function

Description:
COS(X) computes the cosine of X.

Option: f95, gnu

Type: elemental function

Syntax : X = COS(X)

Arguments:
X The type shall be an REAL(*) or COMPLEX(*).

Return value:
The return value has same type and kind than X.

Example:

Chapter 7: Intrinsic Procedures 51

program test_cos

real :: x = 0.0

x = cos(x)

end program test_cos

Specific names:
Name Argument Return type Option
DCOS(X) REAL(8) X REAL(8) f95, gnu
CCOS(X) COMPLEX(4) X COMPLEX(4) f95, gnu
ZCOS(X) COMPLEX(8) X COMPLEX(8) f95, gnu
CDCOS(X) COMPLEX(8) X COMPLEX(8) f95, gnu

7.23 COSH — Hyperbolic cosine function

Description:
COSH(X) computes the hyperbolic cosine of X.

Option: f95, gnu

Type: elemental function

Syntax : X = COSH(X)

Arguments:
X The type shall be an REAL(*).

Return value:
The return value is of type REAL(*) and it is positive (cosh(x) ≥ 0.

Example:
program test_cosh

real(8) :: x = 1.0_8

x = cosh(x)

end program test_cosh

Specific names:
Name Argument Return type Option
DCOSH(X) REAL(8) X REAL(8) f95, gnu

7.24 ERF — Error function

Description:
ERF(X) computes the error function of X.

Option: gnu

Type: elemental function

Syntax : X = ERF(X)

Arguments:
X The type shall be an REAL(*).

Return value:
The return value is of type REAL(*) and it is positive (−1 ≤ erf(x) ≤ 1.

Example:

52 The GNU Fortran 95 Compiler

program test_erf

real(8) :: x = 0.17_8

x = erf(x)

end program test_erf

Specific names:
Name Argument Return type Option
DERF(X) REAL(8) X REAL(8) gnu

7.25 ERFC — Error function

Description:
ERFC(X) computes the complementary error function of X.

Option: gnu

Type: elemental function

Syntax : X = ERFC(X)

Arguments:
X The type shall be an REAL(*).

Return value:
The return value is of type REAL(*) and it is positive (0 ≤ erfc(x) ≤ 2.

Example:
program test_erfc

real(8) :: x = 0.17_8

x = erfc(x)

end program test_erfc

Specific names:
Name Argument Return type Option
DERFC(X) REAL(8) X REAL(8) gnu

7.26 EXP — Exponential function

Description:
EXP(X) computes the base e exponential of X.

Option: f95, gnu

Type: elemental function

Syntax : X = EXP(X)

Arguments:
X The type shall be an REAL(*) or COMPLEX(*).

Return value:
The return value has same type and kind than X.

Example:
program test_exp

real :: x = 1.0

x = exp(x)

end program test_exp

Chapter 7: Intrinsic Procedures 53

Specific names:
Name Argument Return type Option
DEXP(X) REAL(8) X REAL(8) f95, gnu
CEXP(X) COMPLEX(4) X COMPLEX(4) f95, gnu
ZEXP(X) COMPLEX(8) X COMPLEX(8) f95, gnu
CDEXP(X) COMPLEX(8) X COMPLEX(8) f95, gnu

7.27 LOG — Logarithm function

Description:
LOG(X) computes the logarithm of X.

Option: f95, gnu

Type: elemental function

Syntax : X = LOG(X)

Arguments:
X The type shall be an REAL(*) or COMPLEX(*).

Return value:
The return value is of type REAL(*) or COMPLEX(*). The kind type parameter
is the same as X.

Example:
program test_log

real(8) :: x = 1.0_8

complex :: z = (1.0, 2.0)

x = log(x)

z = log(z)

end program test_log

Specific names:
Name Argument Return type Option
ALOG(X) REAL(4) X REAL(4) f95, gnu
DLOG(X) REAL(8) X REAL(8) f95, gnu
CLOG(X) COMPLEX(4) X COMPLEX(4) f95, gnu
ZLOG(X) COMPLEX(8) X COMPLEX(8) f95, gnu
CDLOG(X) COMPLEX(8) X COMPLEX(8) f95, gnu

7.28 LOG10 — Base 10 logarithm function

Description:
LOG10(X) computes the base 10 logarithm of X.

Option: f95, gnu

Type: elemental function

Syntax : X = LOG10(X)

Arguments:
X The type shall be an REAL(*) or COMPLEX(*).

54 The GNU Fortran 95 Compiler

Return value:
The return value is of type REAL(*) or COMPLEX(*). The kind type parameter
is the same as X.

Example:
program test_log10

real(8) :: x = 10.0_8

x = log10(x)

end program test_log10

Specific names:
Name Argument Return type Option
ALOG10(X) REAL(4) X REAL(4) f95, gnu
DLOG10(X) REAL(8) X REAL(8) f95, gnu

7.29 SIN — Sine function

Description:
SIN(X) computes the sine of X.

Option: f95, gnu

Type: elemental function

Syntax : X = SIN(X)

Arguments:
X The type shall be an REAL(*) or COMPLEX(*).

Return value:
The return value has same type and king than X.

Example:
program test_sin

real :: x = 0.0

x = sin(x)

end program test_sin

Specific names:
Name Argument Return type Option
DSIN(X) REAL(8) X REAL(8) f95, gnu
CSIN(X) COMPLEX(4) X COMPLEX(4) f95, gnu
ZSIN(X) COMPLEX(8) X COMPLEX(8) f95, gnu
CDSIN(X) COMPLEX(8) X COMPLEX(8) f95, gnu

7.30 SINH — Hyperbolic sine function

Description:
SINH(X) computes the hyperbolic sine of X.

Option: f95, gnu

Type: elemental function

Syntax : X = SINH(X)

Chapter 7: Intrinsic Procedures 55

Arguments:
X The type shall be an REAL(*).

Return value:
The return value is of type REAL(*).

Example:
program test_sinh

real(8) :: x = - 1.0_8

x = sinh(x)

end program test_sinh

Specific names:
Name Argument Return type Option
DSINH(X) REAL(8) X REAL(8) f95, gnu

7.31 SQRT — Square-root function

Description:
SQRT(X) computes the square root of X.

Option: f95, gnu

Type: elemental function

Syntax : X = SQRT(X)

Arguments:
X The type shall be an REAL(*) or COMPLEX(*).

Return value:
The return value is of type REAL(*) or COMPLEX(*). The kind type parameter
is the same as X.

Example:
program test_sqrt

real(8) :: x = 2.0_8

complex :: z = (1.0, 2.0)

x = sqrt(x)

z = sqrt(z)

end program test_sqrt

Specific names:
Name Argument Return type Option
DSQRT(X) REAL(8) X REAL(8) f95, gnu
CSQRT(X) COMPLEX(4) X COMPLEX(4) f95, gnu
ZSQRT(X) COMPLEX(8) X COMPLEX(8) f95, gnu
CDSQRT(X) COMPLEX(8) X COMPLEX(8) f95, gnu

7.32 TAN — Tangent function

Description:
TAN(X) computes the tangent of X.

Option: f95, gnu

56 The GNU Fortran 95 Compiler

Type: elemental function

Syntax : X = TAN(X)

Arguments:
X The type shall be an REAL(*).

Return value:
The return value is of type REAL(*). The kind type parameter is the same as
X.

Example:
program test_tan

real(8) :: x = 0.165_8

x = tan(x)

end program test_tan

Specific names:
Name Argument Return type Option
DTAN(X) REAL(8) X REAL(8) f95, gnu

7.33 TANH — Hyperbolic tangent function

Description:
TANH(X) computes the hyperbolic tangent of X.

Option: f95, gnu

Type: elemental function

Syntax : X = TANH(X)

Arguments:
X The type shall be an REAL(*).

Return value:
The return value is of type REAL(*) and lies in the range −1 ≤ tanh(x) ≤ 1.

Example:
program test_tanh

real(8) :: x = 2.1_8

x = tanh(x)

end program test_tanh

Specific names:
Name Argument Return type Option
DTANH(X) REAL(8) X REAL(8) f95, gnu

Chapter 8: Contributing 57

8 Contributing

Free software is only possible if people contribute to efforts to create it. We’re always in
need of more people helping out with ideas and comments, writing documentation and
contributing code.

If you want to contribute to GNU Fortran 95, have a look at the long lists of projects you
can take on. Some of these projects are small, some of them are large; some are completely
orthogonal to the rest of what is happening on gfortran, but others are “mainstream”
projects in need of enthusiastic hackers. All of these projects are important! We’ll eventually
get around to the things here, but they are also things doable by someone who is willing
and able.

8.1 Contributors to GNU Fortran 95

Most of the parser was hand-crafted by Andy Vaught, who is also the initiator of the whole
project. Thanks Andy! Most of the interface with GCC was written by Paul Brook.

The following individuals have contributed code and/or ideas and significant help to the
gfortran project (in no particular order):
− Andy Vaught
− Katherine Holcomb
− Tobias Schlter
− Steven Bosscher
− Toon Moene
− Tim Prince
− Niels Kristian Bech Jensen
− Steven Johnson
− Paul Brook
− Feng Wang
− Bud Davis

The following people have contributed bug reports, smaller or larger patches, and much
needed feedback and encouragement for the gfortran project:
− Erik Schnetter
− Bill Clodius
− Kate Hedstrom

Many other individuals have helped debug, test and improve gfortran over the past
two years, and we welcome you to do the same! If you already have done so, and you would
like to see your name listed in the list above, please contact us.

8.2 Projects

Help build the test suite
Solicit more code for donation to the test suite. We can keep code private on
request.

58 The GNU Fortran 95 Compiler

Bug hunting/squishing
Find bugs and write more test cases! Test cases are especially very welcome,
because it allows us to concentrate on fixing bugs instead of isolating them.

Smaller projects (“bug” fixes):
− Allow init exprs to be numbers raised to integer powers.
− Implement correct rounding.
− Implement F restrictions on Fortran 95 syntax.
− See about making Emacs-parsable error messages.

If you wish to work on the runtime libraries, please contact a project maintainer.

Chapter 9: Standards 59

9 Standards

The GNU Fortran 95 Compiler aims to be a conforming implementation of ISO/IEC
1539:1997 (Fortran 95).

In the future it may also support other variants and extensions to the Fortran language.
This includes ANSI Fortran 77, Fortran 90, Fortran 2000 (not yet finalized), and OpenMP.

60 The GNU Fortran 95 Compiler

Chapter 9: Index 61

Index

-
-fbounds-check option . 30
-fdefault-double-8, option . 26
-fdefault-integer-8, option. 26
-fdefault-real-8, option . 26
-fdollar-ok option . 26
-fdump-parse-tree option . 28
-ffixed-line-length-n option . 26
-ffortran-bounds-check option 30
-ffree-form option . 26
-fimplicit-none option . 26
-fmax-identifier-length=n option 26
-fmax-stack-var-size option 30
-fno-fixed-form option . 26
-fno-second-underscore option 30
-fno-underscoring option . 29
-fpackderived . 30
-frepack-arrays option . 30
-fsyntax-only option . 27
-Idir option . 28
-Mdir option . 29
-pedantic option . 27
-pedantic-errors option . 27
-std=std option. 26
-w option . 27
-W option . 28
-Waliasing option . 27
-Wall option . 27
-Wconversion option . 27
-Werror . 28
-Wimplicit-interface option 27
-Wnonstd-intrinsic option . 27
-Wsurprising . 28
-Wunderflow . 28
-Wunused-labels option . 28

A
abort . 39
ABORT . 39
ABS intrinsic. 40
absolute value . 40
ACHAR intrinsic . 40
ACOS intrinsic . 41
adjust string . 41, 42
ADJUSTL intrinsic . 41
ADJUSTR intrinsic . 42
AIMAG intrinsic . 42
AINT intrinsic . 43
aliasing . 27
ALL intrinsic. 43
all warnings . 27
ALLOCATED intrinsic . 44
allocation status . 44

ALOG intrinsic . 53
ALOG10 intrinsic . 53
ANINT intrinsic . 45
ANY intrinsic. 45
arccosine . 41
arcsine . 46
arctangent . 47
array bounds checking . 30
ASCII collating sequence . 40
ASIN intrinsic . 46
ATAN intrinsic . 47
Authors . 57

B
BESJ0 intrinsic . 47
BESJ1 intrinsic . 48
BESJN intrinsic . 48
Bessel . 47, 48, 49, 50
BESY0 intrinsic . 49
BESY1 intrinsic . 49
BESYN intrinsic . 50
bounds checking . 30

C
CABS intrinsic . 40
card image . 26
CDABS intrinsic . 40
CDCOS intrinsic . 50
CDEXP intrinsic . 52
CDLOG intrinsic . 53
CDSIN intrinsic . 54
CDSQRT intrinsic . 55
character set . 26
checking subscripts . 30
CLOG intrinsic . 53
code generation, conventions 29
command options . 25
Contributing . 57
Contributors . 57
conversion . 27
COS intrinsic. 50
COSH intrinsic . 51
cosine . 50
Credits . 57
CSQRT intrinsic . 55

D
DABS intrinsic . 40
DACOS intrinsic . 41
DASIN intrinsic . 46
DATAN intrinsic . 47

62 The GNU Fortran 95 Compiler

DBESJ0 intrinsic . 47
DBESJ1 intrinsic . 48
DBESJN intrinsic . 48
DBESY0 intrinsic . 49
DBESY1 intrinsic . 49
DBESYN intrinsic . 50
DCOS intrinsic . 50
DCOSH intrinsic . 51
debugging information options 28
DEXP intrinsic . 52
dialect options . 26
DIMAG intrinsic . 42
DINT intrinsic . 43
directive, INCLUDE . 28
directory, options . 28
directory, search paths for inclusion 28
DLOG intrinsic . 53
DLOG10 intrinsic . 53
DNINT intrinsic . 45
dollar sign . 26
DSIN intrinsic . 54
DSINH intrinsic . 54
DSQRT intrinsic . 55
DTAN intrinsic . 55
DTANH intrinsic . 56

E
environment variables . 31
ERF intrinsic. 51
ERFC intrinsic . 52
error . 51, 52
EXP intrinsic. 52
exponential . 52
extended-source option . 26
Extension . 37
extra warnings . 28

F
FDL, GNU Free Documentation License 9
fixed form . 26
Fortran 77 . 23
Fortran 90, features . 26
free form . 26

G
G77 . 23
GNU Compiler Collection . 21
GNU Fortran 95 command options 25

H
hyperbolic cosine . 51
hyperbolic sine . 54
hyperbolic tangent . 56

I
IABS intrinsic . 40
Imaginary part . 42
INCLUDE directive . 28
inclusion, directory search paths for 28
Initialization . 37
Intrinsic Procedures . 39
Introduction . 1

K
Kind specifications . 37

L
labels, unused . 28
language, dialect options . 26
length of source lines . 26
limits, lengths of source lines 26
lines, length . 26
LOG intrinsic. 53
LOG10 intrinsic . 53
logarithm . 53

M
messages, warning . 27
module search path . 28

N
negative forms of options . 25

O
option -fmax-identifier-length=n 26
option, -fdefault-double-8 . 26
option, -fdefault-integer-8. 26
option, -fdefault-real-8 . 26
option, -fdump-parse-tree . 28
option, -Mdir . 29
option, -std=std . 26
options, -fdollar-ok . 26
options, -ffixed-line-length-n 26
options, -ffree-form . 26
options, -fimplicit-none . 26
options, -fno-fixed-form . 26
options, -fno-second-underscore 30
options, -fno-underscoring . 29
options, -fsyntax-only . 27
options, -Idir . 28
options, -pedantic . 27
options, -pedantic-errors . 27
options, -w . 27
options, -W . 28
options, -Waliasing . 27
options, -Wall . 27

Chapter 9: Index 63

options, -Wconversion . 27
options, -Werror . 28
options, -Wimplicit-interface 27
options, -Wnonstd-intrinsic 27
options, -Wsurprising . 28
options, -Wunderflow . 28
options, -Wunused-labels . 28
options, code generation . 29
options, debugging . 28
options, dialect . 26
options, directory search . 28
options, GNU Fortran 95 command 25
options, negative forms . 25
options, warnings . 27

P
paths, search . 28

R
range checking . 30
Repacking arrays . 30
run-time, options . 29

S
search path . 28
search paths, for included files 28
SIN intrinsic. 54
sine . 54
SINH intrinsic . 54
source file format . 26
Source Form. 26
SQRT intrinsic . 55
square-root . 55
Standards . 59
Structure packing . 30

subscript checking . 30
suppressing warnings . 27
Suspicious . 28
symbol names . 26
symbol names, transforming 29, 30
symbol names, underscores 29, 30
syntax checking . 27

T
TAN intrinsic. 55
tangent . 55
TANH intrinsic . 56
transforming symbol names 29, 30
true values . 43, 45

U
UNDERFLOW . 28
underscore . 29, 30
unused labels . 28

W
warnings, all . 27
warnings, extra . 28
warnings, suppressing . 27
whole number . 43, 45

Z
ZABS intrinsic . 40
ZCOS intrinsic . 50
ZEXP intrinsic . 52
ZLOG intrinsic . 53
ZSIN intrinsic . 54
ZSQRT intrinsic . 55

64 The GNU Fortran 95 Compiler

