
AWK REFERENCE

Action Statements .. 9
Arrays ... 7
Awk Program Execution ... 5
Bit Manipulation Functions (gawk) 17
Bug Reports.. 2
Closing Redirections .. 13
Command Line Arguments (standard) 2
Command Line Arguments (gawk) 3
Command Line Arguments (mawk) 4
Conversions And Comparisons 8
Copying Permissions.. 18
Definitions .. 2
Dynamic Extensions (gawk) 17
Environment Variables (gawk) 11
Escape Sequences... 9
Expressions ... 7
Fields .. 10
FTP/HTTP/GIT Information .. 18
Historical Features (gawk) .. 10
Input Control .. 13
Internationalization (gawk) ... 18
Lines And Statements... 4
Localization (gawk)... 12
Numeric Functions ... 15
Output Control.. 13
Pattern Elements... 8
Printf Formats ... 14
Records ... 10
Regular Expressions ... 11
Signals (gawk −−profile) 4
Special Filenames... 12
String Functions ... 16
Time Functions... 17
Type Functions (gawk) .. 18
User-defined Functions .. 15
Variables ... 5

CONTENTS

Arnold Robbins wrote this reference card. We thank Brian
Kernighan and Michael Brennan who reviewed it.

Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor

Boston, MA 02110-1301 USA

Phone: +1-617-542-5942

Fax (including Japan): +1-617-542-2652

E-mail: gnu@gnu.org

URL: https://www.gnu.org

Source Distributions on CD-ROM

Emacs, Make and GDB Manuals

Emacs and GDB References

OTHER FSF PRODUCTS:

Copyright © 1996–2005, 2007, 2009–2018
Free Software Foundation, Inc.

1

This card describes POSIX AWK, as well as three freely available
awk implementations (see FTP/HTTP/GIT Infor mation).
Common extensions (in two or more versions) are printed in light
blue. Features specific to just one version—usually GNU AWK
(gawk)—are printed in dark blue. Exceptions and deprecated
features are printed in red. Features mandated by POSIX are
printed in black.

Several type faces are used to clarify the meaning:
• Courier Bold is used for computer input.
• Times Italic is used for emphasis, to indicate user input and for

syntactic placeholders, such as variable or action.
• Times Roman is used for explanatory text.

number − a floating point number as in ANSI C, such as 3, 2.3,
.4, 1.4e2 or 4.1E5. Numbers may also be given in octal or
hexadecimal: e.g., 011 or 0x11.

escape sequences − a special sequence of characters beginning
with a backslash, used to describe otherwise unprintable
characters. (See Escape Sequences.)

string − a group of characters enclosed in double quotes. Strings
may contain escape sequences.

regexp − a regular expression, either a regexp constant enclosed in
forward slashes, or a dynamic regexp computed at run-time.
Regexp constants may contain escape sequences.

strongly typed reg exp − a regular expression constant with a
leading @. E.g., @/stuff/. Such constants may be assigned to
variables and passed to user-defined functions.

name − a variable, array or function name.

entry(N) − entry entry in section N of the Unix reference manual.

pattern − an expression describing an input record to be matched.

action − statements to execute when an input record is matched.

rule − a pattern-action pair, where the pattern or action may be
missing.

DEFINITIONS

Command line arguments control setting the field separator,
setting variables before the BEGIN rule runs, and the location of
AWK program source code. Implementation-specific command
line arguments change the behavior of the running interpreter.

−F fs Use fs for the input field separator.
−v var=val Assign the value val to the variable var

before execution of the program begins.
Such variable values are available to the
BEGIN rule.

−f prog-file Read the AWK program source from the file
prog-file, instead of from the first command
line argument. Multiple −f options may be
used.

−− Signal the end of options.

COMMAND LINE ARGUMENTS (standard)

If you find a bug in this reference card, please report it via
electronic mail to bug-gawk@gnu.org.

BUG REPORTS

2

Copyright 03-03-18 00:23:11, FSF, Inc. (all)

Long options may abbreviated as long as the abbreviation remains
unique. You may use ‘‘−W option’’ for full POSIX compliance.

−−assign var=val Same as −v.
−−field-separator fs Same as −F.
−−file prog-file Same as −f.
−b, −−characters−as−bytes

Treat all input data as single-byte characters. Overridden by
−−posix.

−c, −−traditional
Disable gawk-specific extensions.

−C, −−copyright
Print the short GNU copyright information on stdout.

−d[file], −−dump-variables[=file]
Print a sorted list of global variables, their types and final
values to file (default: awkvars.out).

−D[file], −−debug[=file]
Enable debugging of program. Optionally read stored
commands from file.

-e ’text’, −−source ’text’
Use text as AWK program source code.

−E file, −−exec file

Read program text from file. No other options are processed.
Also disable command-line variable assignments. Useful
with #!.

−g, −−gen−pot
Process the program and print a GNU gettext format
.pot file on stdout, containing the text of all strings that
were marked for localization.

−h, −−help
Print a short summary of the available options on stdout,
then exit zero.

−i file, −−include file

Include library AWK code in file. See Awk Program
Execution.

−l lib, −−load lib

Load dynamic extension lib. See Dynamic Extensions.
−L [value], −−lint[=value]

Warn about dubious or non-portable constructs. If value is
fatal, lint warnings become fatal errors. If value is
invalid, only issue warnings about things that are actually
invalid (not fully implemented yet).

−M, −−bignum
Enable arbitrary-precision arithmetic.

−n, −−non−decimal−data
Recognize octal and hexadecimal values in input data. Use

this option with great caution!

−N, −−use−lc−numeric
Force use of the locale’s decimal point character when
parsing input data.

−o[file], −−pretty-print[=file]
Output a pretty printed version of the program to file

(default: awkprof.out).
−O, −−optimize

Enable internal optimizations (default is on).
−p[file], −−profile[=file]

Send profiling data to file (default: awkprof.out). The
profile contains execution counts in the left margin of each
statement in the program.

−P, −−posix
Disable common and GNU extensions.

−r, −−re−interval
Enable interval expressions. (Needed with −c.)

COMMAND LINE ARGUMENTS (gawk)

3

−s, −−no−optimize
Disable internal optimizations.

−S, −−sandbox
Disable the system() function, input redirection with
getline, output redirection with print and printf,
and loading dynamic extensions.

-t, −−lint−old
Warn about constructs that are not portable to the original
version of Unix awk.

−V, −−version
Print version info on stdout and exit zero.

Normally, if there is program text, unknown options are passed on
to the AWK program in ARGV for processing. In compatibility
mode, unknown options are flagged as invalid, but are otherwise
ignored.

COMMAND LINE ARGUMENTS (gawk)

The following options are specific to mawk.

−W dump Print an assembly listing of the program
to stdout and exit zero.

−W exec file Read program text from file. No other
options are processed. Useful with #!.

−W interactive Unbuffer stdout and line buffer
stdin. Lines are always records,
ignoring RS.

−W posix_space \n separates fields when RS = "".
−W sprintf=num Adjust the size of mawk’s internal

sprintf buffer.
−W version Print version and copyright on

stdout, limit information on
stderr, and exit zero.

The options may be abbreviated using just the first letter, e.g.,
−We, −Wv and so on.

COMMAND LINE ARGUMENTS (mawk)

gawk accepts two signals while profiling. SIGUSR1 dumps a
profile and function call stack to the profile file. It then continues
to run. SIGHUP is similar, but exits.

SIGNALS (gawk −−profile)

AWK is a line-oriented language. The pattern comes first, and
then the action. Action statements are enclosed in { and }. Either
the pattern or the action may be missing, but not both. If the
pattern is missing, the action is executed for every input record.
A missing action is equivalent to

{ print }

which prints the entire record.

Comments begin with the # character, and continue until the end
of the line. Normally, statements end with a newline, but lines
ending in a ‘‘,’’, {, ?, :, &&, or ||, are automatically continued.
Lines ending in do or else also have their statements
automatically continued on the following line. In other cases, a
line can be continued by ending it with a ‘‘\’’, in which case the
newline is ignored. However, a ‘‘\’’ after a # is not special.

Multiple statements may be put on one line by separating them
with a ‘‘;’’. This applies to both the statements within the action
part of a pattern-action pair (the usual case) and to the pattern-
action statements themselves.

LINES AND STATEMENTS

4

Copyright 03-03-18 00:23:11, FSF, Inc. (all)

AWK programs are a sequence of optional directives, pattern-
action statements and optional function definitions.

@include "filename"
@load "filename"
pattern { action statements }
function name(parameter list) { statements }

awk first reads the program source from the prog-file(s), if
specified, from arguments to −−source, or from the first non-
option argument on the command line. The program text is read
as if all the prog-file(s) and command line source texts had been
concatenated.

gawk includes files named on @include lines. Nested includes
are allowed. gawk loads extensions named on @load lines; see
Dynamic Extensions.

AWK programs execute in the following order. First, all variable
assignments specified via the −v option are performed. Next,
awk executes the code in the BEGIN rules(s), if any, and then
proceeds to read the files 1 through ARGC − 1 in the ARGV
array. If there are no files named on the command line, awk
reads the standard input.

A command line argument of the form var=val, is treated as a
variable assignment. The variable var is assigned the value val.
(This happens after any BEGIN rule(s) have been run.)

If the value of a particular element of ARGV is empty (""), awk
skips over it.

For each input file, if a BEGINFILE rule exists, gawk executes
the associated code before processing the contents of the file.
Similarly, gawk executes the code associated with ENDFILE
after processing the file.

For each record in the input, awk tests to see if it matches any
pattern in the AWK program. For each pattern that the record
matches, it executes the associated action. The patterns are tested
in the order they occur in the program.

Finally, after all the input is exhausted, awk executes the code in
the END rule(s), if any.

If a program only has a BEGIN rule, no input files are processed.
If a program only has an END rule, the input is read.

AWK PROGRAM EXECUTION

ARGC Number of command line arguments.
ARGIND Index in ARGV of current data file.
ARGV Array of command line arguments. Indexed from

zero to ARGC − 1. Dynamically changing the
contents of ARGV can control the files used for
data.

BINMODE Controls ‘‘binary’’ mode for all file I/O. Values of
1, 2, or 3, indicate input, output, or all files,
respectively, should use binary I/O. (Not Brian
Kernighan’s awk.) Applies only to non-POSIX
systems. For gawk, string values of "r", or "w"
specify that input files, or output files, respectively,
should use binary I/O. Use "rw" or "wr" for all
files.

VARIABLES

5

CONVFMT Conversion format for numbers, default
value is "%.6g".

ENVIRON Array containing the current environment. It
is indexed by the environment variable
names, each element being the value of that
variable.

ERRNO String error value if a getline redirection
or read fails, or if close() fails.

FIELDWIDTHS Whitespace-separated list of field widths.
Used to parse the input into fields of fixed
width, instead of the value of FS. See
Fields.

FILENAME Name of the current input file. If no files
given on the command line, FILENAME is
‘‘−’’. FILENAME is undefined inside the
BEGIN rule (unless set by getline).

FNR Record number in current input file.
FPAT Regular expression describing field contents.

Used to parse the input based on the fields
instead of the field separator.

FS Input field separator, a space by default (see
Fields).

FUNCTAB An array indexed by the names of all user-
defined and extension functions.

IGNORECASE If non-zero, all regular expression and string
operations ignore case. Array subscripting
is not affected. However, the asort() and
asorti() function are affected.

LINT Provides dynamic control of the −−lint
option from within an AWK program.

NF Number of fields in the current input record.
NR Total number of input records seen so far.
OFMT Output format for numbers, "%.6g", by

default.
OFS Output field separator, a space by default.
ORS Output record separator, a newline by

default.
PREC The working precision of arbitrary precision

floating-point numbers, 53 by default.
PROCINFO Elements of this array provide access to

information about the running AWK
program. See GAWK: Effective AWK

Programming for details.
RLENGTH Length of the string matched by match();

−1 if no match.
ROUNDMODE The rounding mode to use for arbitrary

precision arithmetic, by default "N".
RS Input record separator, a newline by default

(see Records).
RSTART Index of the first character matched by

match(); zero if no match.
RT Record terminator. gawk sets RT to the

input text that matched the character or
regular expression specified by RS.

SUBSEP Character(s) used to separate multiple
subscripts in array elements, by default
"\034". (See Arrays).

SYMTAB An array indexed by the names of all global
variables and arrays. May be used to
indirectly set variable and array values.

TEXTDOMAIN The internationalization text domain, for
finding the localized translations of the
program’s strings.

VARIABLES (continued)

6

Copyright 03-03-18 00:23:11, FSF, Inc. (all)

An array subscript is an expression between square brackets ([
and]). If the expression is a list (expr, expr ...), then the
subscript is a string consisting of the concatenation of the (string)
value of each expression, separated by the value of SUBSEP.
This simulates multi-dimensional arrays. For example:

i = "A"; j = "B"; k = "C"
x[i, j, k] = "hello, world\n"

assigns "hello, world\n" to the element of the array x
indexed by the string "A\034B\034C". All arrays in AWK are
associative, i.e., indexed by string values.

Use the special operator in in an if or while statement to see
if a particular value is an array index.

if (val in array)
print array[val]

If the array has multiple subscripts, use (i, j) in array.

Use the in construct in a for loop to iterate over all the elements
of an array.

Use the delete statement to delete an element from an array.
Specifying just the array name without a subscript in the delete
statement deletes the entire contents of an array. You cannot use
delete with FUNCTAB or SYMTAB.

gawk provides true multidimensional arrays. Such arrays need
not be ‘‘rectangular’’ as in C or C++. For example:

a[1] = 5; a[2][1] = 6; a[2][2] = 7

ARRAYS

Expressions are used as patterns, for controlling conditional
action statements, and to produce parameter values when calling
functions. Expressions may also be used as simple statements,
particularly if they hav e side-effects such as assignment.
Expressions mix operands and operators. Operands are constants,
fields, variables, array elements, and the return values from
function calls (both built-in and user-defined).

Regexp constants (/pat/), when used as simple expressions, i.e.,
not used on the right-hand side of ˜ and !˜, or as arguments to
the gensub(), gsub(), match(), patsplit(),
split(), and sub(), functions, mean $0 ˜ /pat/.

The AWK operators, in order of decreasing precedence, are:

(...) Grouping
$ Field reference
++ −− Increment and decrement, prefix and postfix
ˆ ** Exponentiation
+ − ! Unary plus, unary minus, and logical negation
* / % Multiplication, division, and modulus
+ − Addition and subtraction
space String concatenation
< > Less than, greater than
<= >= Less than or equal, greater than or equal
== != Equal, not equal
˜ !˜ Regular expression match, negated match
in Array membership
&& Logical AND, short circuit
|| Logical OR, short circuit
?: In-line conditional expression
= += −= *= /= %= ˆ= **=

Assignment operators

EXPRESSIONS

7

Variables and fields may be (floating point) numbers, strings or
both. Context determines how a variable’s value is interpreted. If
used in a numeric expression, it will be treated as a number, if
used as a string it will be treated as a string. Assigning a strongly
typed regexp constant to a scalar makes it a regexp.

To force a variable to be treated as a number, add zero to it; to
force it to be treated as a string, concatenate it with the null string.

Uninitialized variables have the numeric value zero and the string
value "" (the null, or empty, string).

When a string must be converted to a number, the conversion is
accomplished using strtod(3). A number is converted to a string
by using the value of CONVFMT as a format string for sprintf(3),
with the numeric value of the variable as the argument. However,
ev en though all numbers in AWK are floating-point, integral
values are always converted as integers.

Comparisons are performed as follows: If two variables are
numeric, they are compared numerically. If one value is numeric
and the other has a string value that is a ‘‘numeric string,’’ then
comparisons are also done numerically. Otherwise, the numeric
value is converted to a string, and a string comparison is
performed. Two strings are compared, of course, as strings.

Note that string constants, such as "57", are not numeric strings,
they are string constants. The idea of ‘‘numeric string’’ only
applies to fields, getline input, FILENAME, ARGV elements,
ENVIRON elements and the elements of an array created by
split() or patsplit() that are numeric strings. The basic
idea is that user input, and only user input, that looks numeric,
should be treated that way.

CONVERSIONS AND COMPARISONS

AWK patterns may be one of the following.

BEGIN
END
BEGINFILE
ENDFILE
expression

pat1,pat2

BEGIN and END are special patterns that provide start-up and
clean-up actions respectively. They must have actions. There can
be multiple BEGIN and END rules; they are merged and executed
as if there had just been one large rule. They may occur anywhere
in a program, including different source files.

BEGINFILE and ENDFILE are special patterns that execute
before the first record of each file and after the last record of each
file, respectively. In the BEGINFILE rule, the ERRNO variable is
non-null if there is a problem with the file; the rule should use
nextfile to skip the file if desired. Otherwise gawk exits with
its usual fatal error. The actions for multiple BEGINFILE and
ENDFILE patterns are merged.

Expression patterns can be any expression, as described under
Expressions.

The pat1,pat2 pattern is called a range pattern. It matches all
input records starting with a record that matches pat1, and
continuing until a record that matches pat2, inclusive. It does not
combine with any other pattern expression.

PA TTERN ELEMENTS

8

Copyright 03-03-18 00:23:11, FSF, Inc. (all)

break
Break out of the nearest enclosing switch statement, or do,
for, or while loop.

continue
Skip the rest of the loop body. Evaluate the condition part of
the nearest enclosing do or while loop, or go to the incr

part of a for loop.
delete array[index]

Delete element index from array array.
delete array

Delete all elements from array array.
do statement while (condition)

Execute statement while condition is true. The statement is
always executed at least once.

exit [expression]
Terminate input record processing. Execute the END rule(s)
if present. If present, expression becomes awk’s return
value.

for (init; cond; incr) statement

Execute init. Evaluate cond. If it is true, execute statement.
Execute incr before going back to the top to re-evaluate cond.
Any of the three may be omitted. A missing cond is
considered to be true.

for (var in array) statement

Execute statement once for each subscript in array, with var

set to a different subscript each time through the loop.
if (condition) statement1 [else statement2]

If condition is true, execute statement1, otherwise execute
statement2. Each else matches the closest if.

next See Input Control.
nextfile See Input Control.
switch (expression) {
case constant|regular expression: statement(s)

default: statement(s)

}
Switch on expression, execute case if matched, default if not.
The default label and associated statements are optional.

while (condition) statement

While condition is true, execute statement.
{ statements } .br A list of statements enclosed in braces can be

used anywhere that a single statement would otherwise be
used.

ACTION STATEMENTS

Within strings constants ("...") and regexp constants (/.../),
escape sequences may be used to generate otherwise unprintable
characters. This table lists the available escape sequences.

\a alert (bell) \r carriage return
\b backspace \t horizontal tab
\f form feed \v vertical tab
\n newline \\ backslash
\ddd octal value ddd \xhh hex value hh

\" double quote \/ forward slash

ESCAPE SEQUENCES

9

Normally, records are separated by newline characters. Assigning
values to the built-in variable RS controls how records are
separated. If RS is any single character, that character separates
records. Otherwise, RS is a regular expression. (Not Brian
Kernighan’s awk.) Te xt in the input that matches this regular
expression separates the record. gawk sets RT to the value of the
input text that matched the regular expression. The value of
IGNORECASE also affects how records are separated when RS is
a regular expression. If RS is set to the null string, then records
are separated by one or more empty lines. When RS is set to the
null string, the newline character always acts as a field separator,
in addition to whatever value FS may have. mawk does not apply
exceptional rules to FS when RS is set to "".

RECORDS

As each input record is read, awk splits the record into fields,
using the value of the FS variable as the field separator. If FS is a
single character, fields are separated by that character. If FS is
the null string, then each individual character becomes a separate
field. Otherwise, FS is expected to be a full regular expression.
In the special case that FS is a single space, fields are separated
by runs of spaces and/or tabs and/or newlines. Leading and
trailing whitespace are ignored. The value of IGNORECASE also
affects how fields are split when FS is a regular expression.

If the FIELDWIDTHS variable is set to a space-separated list of
numbers, each field is expected to have a fixed width, and gawk
splits up the record using the specified widths. Each field width
may optionally be preceded by a colon-separated value specifying
the number of characters to skip before the field starts. The value
of FS is ignored. Assigning a new value to FS or FPAT overrides
the use of FIELDWIDTHS. and restores the default behavior.

Similarly, if the FPAT variable is set to a string representing a
regular expression, each field is made up of text that matches that
regular expression. In this case, the regular expression describes
the fields themselves, instead of the text that separates the fields.
Assigning a new value to FS or FIELDWIDTHS overrides the use
of FPAT.

Each field in the input record may be referenced by its position:
$1, $2 and so on. $0 is the whole record. Fields may also be
assigned new values.

The variable NF is set to the total number of fields in the input
record.

References to non-existent fields (i.e., fields after $NF) produce
the null string. However, assigning to a non-existent field (e.g.,
$(NF+2) = 5) increases the value of NF, creates any
intervening fields with the null string as their value, and causes
the value of $0 to be recomputed with the fields being separated
by the value of OFS. References to negative numbered fields
cause a fatal error. Decreasing the value of NF causes the trailing
fields to be lost (not Brian Kernighan’s awk).

FIELDS

It is possible to call the length() built-in function not only
with no argument, but even without parentheses. Doing so,
however, is poor practice, and gawk issues a warning about its
use if −−lint is specified on the command line.

HISTORICAL FEATURES (gawk)

10

Copyright 03-03-18 00:23:11, FSF, Inc. (all)

Regular expressions are the extended kind originally defined by
egrep. gawk supports additional GNU operators. A word-

constituent character is a letter, digit, or underscore (_).

Summary of Regular Expressions
In Decreasing Precedence

(r) regular expression (for grouping)
c if non-special character, matches itself
\c turn off special meaning of c

ˆ beginning of string (note: not line)
$ end of string (note: not line)
. any single character, including newline
[...] any one character in ... or range
[ˆ...] any one character not in ... or range
\y word boundary
\B middle of a word
\< beginning of a word
\> end of a word
\s any whitespace character
\S any non-whitespace character
\w any word-constituent character
\W any non-word-constituent character
\‘ beginning of a string
\’ end of a string
r* zero or more occurrences of r

r+ one or more occurrences of r

r? zero or one occurrences of r

r{n,m} n to m occurrences of r (POSIX: see note below)
r1| r2 r1 or r2

The r{n,m} notation is called an interval expression. Not
supported by mawk or Brian Kernighan’s awk.

In regular expressions, within character ranges ([...]), the
notation [[:class:]] defines character classes:

alnum alphanumeric lower lowercase
alpha alphabetic print printable
blank space or tab punct punctuation
cntrl control space whitespace
digit decimal upper uppercase
graph non-spaces xdigit hexadecimal

REGULAR EXPRESSIONS

The environment variable AWKPATH specifies a search path to
use when finding source files named with the −f option. The
default path is ".:/usr/local/share/awk". If a file name
given to the −f option contains a ‘‘/’’ character, no path search is
performed.

The variable AWKLIBPATH specifies the search path for dynamic
extensions to use with @load and the −l option.

For socket communication, GAWK_SOCK_RETRIES controls the
number of connection retries, and GAWK_MSEC_SLEEP controls
the interval between retries. The interval is in milliseconds. On
systems that do not support usleep(3), the value is rounded up to
an integral number of seconds.

The value of GAWK_READ_TIMEOUT specifies the time, in
milliseconds, for gawk to wait for input before returning with an
error.

If POSIXLY_CORRECT exists then gawk behaves exactly as if
the −−posix option had been given.

ENVIRONMENT VARIABLES (gawk)

11

There are several steps involved in producing and running a
localizable awk program.

1. Add a BEGIN action to assign a value to the TEXTDOMAIN
variable to set the text domain for your program.

BEGIN { TEXTDOMAIN = "myprog" }

This allows gawk to find the .gmo file associated with your
program. Without this step, gawk uses the messages text
domain, which probably won’t work.

2. Mark all strings that should be translated with leading
underscores.

3. Use the bindtextdomain(), dcgettext(), and/or
dcngettext() functions in your program, as appropriate.

4. Run

gawk −−gen−pot −f myprog.awk > myprog.pot

to generate a .pot file for your program.

5. Provide appropriate translations, and build and install a
corresponding .gmo file.

The internationalization features are described in full detail in
GAWK: Effective AWK Programming.

LOCALIZATION (gawk)

All three awk implementations recognize certain special
filenames internally when doing I/O redirection from either
print or printf into a file or via getline from a file.
These filenames provide access to open file descriptors inherited
from the parent process. They may also be used on the command
line to name data files. The filenames are:

"−" standard input
/dev/stdin standard input
/dev/stdout standard output
/dev/stderr standard error output

The following names are specific to gawk.

/dev/fd/n

File associated with the open file descriptor n.
/inet/tcp/lport/rhost/rport

/inet4/tcp/lport/rhost/rport

/inet6/tcp/lport/rhost/rport

Files for TCP/IP connections on local port lport to remote
host rhost on remote port rport. Use a port of 0 to have the
system pick a port. Use /inet4 to force an IPv4
connection, and /inet6 to force an IPv6 connection. Plain
/inet uses the system default (probably IPv4). Usable only
with the |& two-way I/O operator.

/inet/udp/lport/rhost/rport

/inet4/udp/lport/rhost/rport

/inet6/udp/lport/rhost/rport

Similar, but use UDP/IP instead of TCP/IP.

SPECIAL FILENAMES

12

Copyright 03-03-18 00:23:11, FSF, Inc. (all)

getline Set $0 from next record; set NF, NR,
FNR.

getline < file Set $0 from next record of file; set NF.
getline v Set v from next input record; set NR,

FNR.
getline v < file Set v from next record of file.
cmd | getline Pipe into getline; set $0, NF.
cmd | getline v Pipe into getline; set v.
cmd |& getline

Coprocess pipe into getline; set $0, NF.
cmd |& getline v

Coprocess pipe into getline; set v.
next

Stop processing the current input record. Read next input
record and start over with the first pattern in the program.
Upon end of the input data, execute any END rule(s).

nextfile
Stop processing the current input file. The next input record
comes from the next input file. Update FILENAME and
ARGIND, reset FNR to 1, and start over with the first pattern.
At end of file, execute any ENDFILE and END rule(s).

getline returns 1 on success, zero on end of file, and −1 on an
error. For retryable I/O, getline returns −2. All versions set
RT. Upon an error, ERRNO describes the problem.

INPUT CONTROL

fflush([file])
Flush any buffers associated with the open output file or pipe
file. If no file, or if file is null, then flush all open output files
and pipes.

print
Print the current record. Terminate output record with ORS.

print expr-list

Print expressions. Each expression is separated by the value
of OFS. Terminate the output record with ORS.

printf fmt, expr-list

Format and print (see Pr intf Formats).
system(cmd)

Execute the command cmd, and return the exit status (may
not be available on non-POSIX systems).

I/O redirections may be used with both print and printf.

print "hello" > file

Print data to file. The first time the file is written to, it is
truncated. Subsequent commands append data.

print "hello" >> file

Append data to file. The previous contents of file are not lost.
print "hello" | cmd

Print data down a pipeline to cmd.
print "hello" |& cmd

Print data down a pipeline to coprocess cmd.

OUTPUT CONTROL

close(file)
Close input or output file, pipe or coprocess.

close(command, how)
Close one end of coprocess pipe. Use "to" for the write
end, or "from" for the read end.

On success, close() returns zero for a file, or the exit status for
a process. It returns −1 if file was nev er opened, or if there was a
system problem. ERRNO describes the error.

CLOSING REDIRECTIONS

13

The printf statement and sprintf() function accept the
following conversion specification formats:

%c An ASCII character
%d, %i A decimal number (the integer part)
%e A floating point number of the form

[−]d.dddddde[+ −]dd
%E Like %e, but use E instead of e
%f A floating point number of the form

[−]ddd.dddddd
%F Like %f, but use capital letters for infinity and

not-a-number values.
%g Use %e or %f, whichever is shorter, with

nonsignificant zeros suppressed
%G Like %g, but use %E instead of %e
%o An unsigned octal integer
%u An unsigned decimal integer
%s A character string
%x An unsigned hexadecimal integer
%X Like %x, but use ABCDEF for 10–15
%% A literal %; no argument is converted

Optional, additional parameters may lie between the % and the
control letter:

count$ Use the count’th argument at this point in the
formatting (a positional specifier). For use in
translated versions of format strings, not in the
original text of an AWK program.

− Left-justify the expression within its field.
space For numeric conversions, prefix positive values

with a space and negative values with a minus
sign.

+ Use before the width modifier to always supply a
sign for numeric conversions, even if the data to
be formatted is positive. The + overrides the
space modifier.

Use an ‘‘alternate form’’ for some control letters:
%o Supply a leading zero.
%x, %X Supply a leading 0x or 0X for a nonzero result.
%e, %E, %f The result always has a decimal point.
%g, %G Trailing zeros are not removed.
0 Pad output with zeros instead of spaces. This

applies only to the numeric output formats. Only
has an effect when the field width is wider than
the value to be printed.

’ Use the locale’s thousands separator and decimal
point characters.

width Pad the field to this width. The field is normally
padded with spaces. If the 0 flag has been used,
pad with zeros.

.prec Precision. The meaning of the prec varies by
control letter:

%d,%o,%i,
%u,%x,%X The minimum number of digits to print.
%e, %E, %f The number of digits to print to the right of the

decimal point.
%g, %G The maximum number of significant digits.
%s The maximum number of characters to print.

Use a * in place of either the width or prec specifications to take
their values from the printf or sprintf() argument list.
Use *n$ to use positional specifiers with a dynamic width or
precision.

PRINTF FORMATS

14

Copyright 03-03-18 00:23:11, FSF, Inc. (all)

Functions in AWK are defined as follows:

function name(parameter list)
{

statements

}

Functions execute when they are called from within expressions
in either patterns or actions. Actual parameters supplied in the
function call instantiate the formal parameters declared in the
function. Arrays are passed by reference, other variables are
passed by value.

Declare local variables as extra parameters in the parameter list.
The convention is to separate local variables from real parameters
by extra spaces in the parameter list. For example:

a and b are local
function f(p, q, a, b)
{

.....
}

/abc/ { ... ; f(1, 2) ; ... }

The left parenthesis in a function call is required to immediately
follow the function name without any intervening whitespace.
This is to avoid a syntactic ambiguity with the concatenation
operator. This restriction does not apply to the built-in functions.

Functions may call each other and may be recursive. Function
parameters used as local variables are initialized to the null string
and the number zero upon function invocation.

Functions may be called indirectly. To do this, assign the name of
the function to be called, as a string, to a variable. Then use the
variable as if it were the name of a function, prefixed with an
‘‘at’’ sign, like so:

function myfunc()
{

print "myfunc called"
}

{
the_func = "myfunc"
@the_func()

}

Use return to return a value from a function. The return value
is undefined if no value is provided, or if the function returns by
‘‘falling off’’ the end.

The word func may be used in place of function. This usage
is deprecated.

USER-DEFINED FUNCTIONS

atan2(y, x) The arctangent of y/x in radians.
cos(expr) The cosine of expr, which is in radians.
exp(expr) The exponential function (e ˆ x).
int(expr) Truncate to integer.
log(expr) The natural logarithm function (base e).
rand() A random number N such that 0 ≤ N < 1.
sin(expr) The sine of expr, which is in radians.
sqrt(expr) The square root of expr.
srand([expr]) Use expr as the new seed for the random

number generator. If no expr, use the time
of day. Return the previous seed.

NUMERIC FUNCTIONS

15

asort(s [, d [, comp]])
Sort the source array s, replacing the indices with numeric
values 1 through n (the number of elements in the array), and
return the number of elements. If destination d is supplied,
copy s to d, sort d, and leave s unchanged. Use comp to
compare indices and elements.

asorti(s [, d [, comp]])
Like asort(), but sort on the indices, not the values. The
original values are thrown array, so provide a second array to
preserve the first.

gensub(r, s, h [, t])
Search the target string t for matches of the regular
expression r. If h is a string beginning with g or G, replace all
matches of r with s. Otherwise, h is a number indicating
which match of r to replace. If t is not supplied, use $0
instead. Within the replacement text s, the sequence \n,
where n is a digit from 1 to 9, indicates just the text that
matched the nth parenthesized subexpression. The sequence
\0 represents the entire matched text, as does the character
&. Unlike sub() and gsub(), the function returns the
modified string; the original target string is not changed.

gsub(r, s [, t])
For each substring matching the regular expression r in the
string t, substitute the string s, and return the number of
substitutions. If t is not supplied, use $0. An & in the
replacement text is replaced with the text that was actually
matched. Use \& to get a literal &. See GAWK: Effective

AWK Pro gramming for a fuller discussion of the rules for &’s
and backslashes in the replacement text of gensub(),
sub() and gsub().

index(s, t)
Return the index of the string t in the string s, or zero if t is
not present.

length([s])
Return the length of the string s, or the length of $0 if s is not
supplied. With an array argument, return the number of
elements in the array.

match(s, r [, a])
Return the position in s where the regular expression r

occurs, or zero if r is not present, and set the values of
variables RSTART and RLENGTH. If a is supplied, the text
matching all of r is placed in a[0]. If there were
parenthesized subexpressions, the matching texts are placed
in a[1], a[2], and so on. Subscripts a[n, "start"],
and a[n, "length"] provide the starting index in the
string and length, respectively, of each matching substring.

patsplit(s, a [, r [, seps]])
Split the string s into the array a and the array seps of
separator strings using the regular expression r, and return
the number of fields. Element values are the portions of s

that matched r. The value of seps[i] is the separator that
appeared in front of a[i+1]. If r is omitted, use FPAT
instead. Clear the arrays a and seps first. Splitting behaves
identically to field splitting with FPAT.

split(s, a [, r [, seps]])
Split the string s into the array a and the array seps of
separator strings using the regular expression r, and return
the number of fields. If r is omitted, use FS instead. Clear
the arrays a and seps first. Splitting behaves identically to
field splitting. (See Fields.)

sprintf(fmt, expr-list)
Print expr-list according to fmt, and return the result.

STRING FUNCTIONS

16

Copyright 03-03-18 00:23:11, FSF, Inc. (all)

strtonum(s)
Examine s, and return its numeric value. If s begins with a
leading 0, treat it as an octal number. If s begins with a
leading 0x or 0X, treat s as a hexadecimal number.
Otherwise, treat the number as decimal.

sub(r, s [, t])
Just like gsub(), but replace only the first matching
substring.

substr(s, i [, n])
Return the at most n-character substring of s starting at i. If n

is omitted, use the rest of s.
tolower(str)

Return a copy of the string str, with all the uppercase
characters in str translated to their corresponding lowercase
counterparts. Non-alphabetic characters are left unchanged.

toupper(str)
Return a copy of the string str, with all the lowercase
characters in str translated to their corresponding uppercase
counterparts. Non-alphabetic characters are left unchanged.

STRING FUNCTIONS (continued)

gawk and mawk provide the following functions for obtaining
time stamps and formatting them.

mktime(datespec [, utc-flag])
Convert datespec into a time stamp of the same form as
returned by systime() and return it. The datespec is a
string of the form "YYYY MM DD HH MM SS[DST]". If
utc-flag is present and is non-zero or non-null, the result is in
UTC, otherwise it is in local time.

strftime([format [, timestamp[, utc-flag]]])
Format timestamp according to the specification in format.
The timestamp should be of the same form as returned by
systime(). If utc-flag is present and is non-zero or non-
null, the result is in UTC, otherwise it is in local time. If
timestamp is missing, use the current time of day. If format is
missing, use PROCINFO["strftime"]. The default
value is equivalent to the output of date(1).

systime()
Return the current time of day as the number of seconds
since the Epoch.

TIME FUNCTIONS

gawk provides the following bit manipulation functions.

and(v1, v2 [, ...])
Return the bitwise AND of the arguments.

compl(val)
Return the bitwise complement of val.

lshift(val, count)
Return the value of val, shifted left by count bits.

or(v1, v2 [, ...])
Return the bitwise OR of the arguments.

rshift(val, count)
Return the value of val, shifted right by count bits.

xor(v1, v2 [, ...])
Return the bitwise XOR of the arguments.

BIT MANIPULATION FUNCTIONS (gawk)

@load "extension"
Dynamically load the named extension. This adds new built-
in functions to gawk. The extension is loaded during the
parsing of the program. See the manual for details.

DYNAMIC EXTENSIONS (gawk)

17

isarray(x)
Return true if x is an array, false otherwise.

typeof(x)
Return a string indicating the type of x.

TYPE FUNCTIONS (gawk)

gawk provides the following functions for runtime message
translation.

bindtextdomain(directory [, domain])
Specify the directory where gawk looks for the .gmo files,
in case they will not or cannot be placed in the ‘‘standard’’
locations (e.g., during testing). Return the directory where
domain is ‘‘bound.’’

The default domain is the value of TEXTDOMAIN. When
directory is the null string (""), bindtextdomain()
returns the current binding for the given domain.

dcgettext(string [, domain [, category]])
Return the translation of string in text domain domain for
locale category category. The default value for domain is the
current value of TEXTDOMAIN. The default value for
category is "LC_MESSAGES".

If you supply a value for category, it must be a string equal to
one of the known locale categories. You must also supply a
text domain. Use TEXTDOMAIN to use the current domain.

dcngettext(string1, string2, number [, dom [, cat]])
Return the plural form used for number of the translation of
string1 and string2 in text domain dom for locale category
cat. The default value for dom is the current value of
TEXTDOMAIN. The default for cat is "LC_MESSAGES".

If you supply a value for cat, it must be a string equal to one
of the known locale categories. You must also supply a text
domain. Use TEXTDOMAIN to use the current domain.

INTERNATIONALIZATION (gawk)

Host: ftp.gnu.org
File: /gnu/gawk/gawk-4.2.1.tar.gz

GNU awk (gawk). There may be a later version.

git clone git://github.com/onetrueawk/awk
Brian Kernighan’s awk. This version requires an ANSI C
compiler; GCC (the GNU Compiler Collection) works well.

Host: invisible-island.net
File: /mawk/mawk.tar.gz

Michael Brennan’s mawk. Thomas Dickey now maintains it.

FTP/HTTP/GIT INFORMATION

Copyright © 1996–2005, 2007, 2009–2018 Free Software
Foundation, Inc.

Permission is granted to make and distribute verbatim copies of
this reference card provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of
this reference card under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this
reference card into another language, under the above conditions
for modified versions, except that this permission notice may be
stated in a translation approved by the Foundation.

COPYING PERMISSIONS

18

Copyright 03-03-18 00:23:11, FSF, Inc. (all)

